K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

A E B C F I M D

a) Xét tam giác BEM và tam giácCFM

có:BM=MC(gt)

     góc EBM=gócFCM(tam giác ABC can^)
->T/g BEM=t/g CFM(c.huyền g. nhon)

b)

Xét tam giác vg AEM va t/g vg AFM

có:EM=MF(t/g BEM=t/gAFM)

    AM là cạnh chung

->t/g AEM =t/g AFM( c/ huyền -c.góc vg)

->AE=AF(2 cạnh tương ứng)

Xét tam giác AEI và t/g AFI 

có:MF=EM(t/g BEM= t/g CFM)

    AM là cạnh chung

    AF=AE(C/ m trên)

->t/g AEI =t/g AFI(c-c-c)

->EI = IF(2 cạnh tương ứng)

->góc AIE= góc AIF(2 tương ứng)

=>AE là đường trung trực của EF

c(mik ko pt lm) 

3 tháng 5 2018

a và b bạn Hương Sơn 

c) Ta có: 

\(\Delta ABC\)cân

có AM là đường trung tuyến 

=> AM cũng  là đường trung trực

=> \(AM\perp BC\)

=> AM = 90 độ

Vì \(\Delta ABC\)cân 

=> Góc ABM = góc ACM          (1)

mà Góc ABD = góc ACD = 90 độ            (2)

Từ (1) và (2) => Góc MBD = góc MCD 

Xét \(\Delta DMB\)và \(\Delta DMC\)có :

DM : cạnh chung     (1)

Góc MBD = góc MCD ( chứng minh trên )            (2)

BM = MC ( vì AM là đường trung tuyến của tam giác ABC )                  (3)

Từ (1) ; (2) và (3) => \(\Delta DMB=\Delta DMC\)(cạnh - góc - cạnh)

=> Góc CMD = góc BMD ( cặp góc tương ứng)

Mà Góc CMD + góc BMD = 180 độ

=> Góc CMD = BMD = 180 : 2 = 90 độ

Vì Góc AMC = 90 độ ( vì AM là đường trung trực)

và  góc CMD = 90 độ

=> AMC + CMD = AMD

=> 90 + 90 = AMD 

=> AMD = 180 độ

=>   Ba điểm A ; M ; D thẳng hàng. ( điều phải chứng minh)

Chúc bạn học tốt !

20 tháng 2 2018

Ta có hình sau :
Hình minh họa A E B F C M
Chứng minh :
a) Vì △ABC cân ( AB = AC ) ⇒ △ABC cân tại A
\(\widehat{ABC}=\widehat{ACB}\left(\text{t/c t/g cân}\right)\)
Xét △BEM vuông tại E và △CFM vuông tại F có :
BM = MC ( gt )
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
⇒ △BEM = △CFM ( cạnh huyền - góc nhọn )
⇒ EM = FM ( tương ứng )
b)Nối A với M
Xét △AME vuông tại E và △AMF vuông tại F có:
AM - cạnh chung
EM = FM ( cmt )
⇒ △AME = △AMF (cạnh huyền - cạnh góc vuông )
⇒ AE = AF ( tương ứng )
c) Có △AME = △AMF ( cmt )
\(\widehat{AME}=\widehat{AMF}\) ( tương ứng )
⇒ AM là tia phân giác của \(\widehat{EMF}\)

2 tháng 3 2020

Còn câu d đâu bạn

 

28 tháng 3 2019

a, xét \(\Delta\)BEM và \(\Delta\)CFM có:

           \(\widehat{B}\)=\(\widehat{C}\)(gt)

           BM=CM(trung tuyến AM)

\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)

b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)

\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)

Gọi O là giao của AM và EF

xét tam giác OAE và tam giác OAF có:

              AO cạnh chung

             \(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)

     vì AB=AC mà EB=FC nên AE=AF

\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)

\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)

\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)

từ (1) và (2) suy ra AM là đg trung trực của EF

c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)

ta có tam giác BAM=tam giác CAM(c.g.c)

=> AD là p/g của góc BAC(2)

từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng

                

28 tháng 3 2019

a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C

Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F

BM=CM (BM là trung tuyến)

Góc B=Góc C

=> Tam giác BEM=Tam giác CFM(ch-gn)

b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC

Mà AB=AC=> AE=AF(2)

Từ 1 và 2 => AM là trung trực của EF

6 tháng 5 2022

a) Xét AMB và AMC                                                                                                               

ta có: AB=AC ( vì ABC cân tại A  )                                                                                                 

          BM=MC ( vì AM là đường trung tuyến )                                                                             

          AM: cạnh chung                                                                                                   

Suy ra: AMB = AMC ( c.c.c )