K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NHÂN CÁC ĐA THỨC

1. Tính giá trị:

B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x – 5 với x = 7

2. Cho ba số tự nhiên liên tiếp. Tích của hai số đầu nhỏ hơn tích của hai số sau là 50. Hỏi đã cho ba số nào?

3. Chứng minh rằng nếu: thì (x2 + y2 + z2) (a2 + b2 + c2) = (ax + by + cz)2

CÁC HẰNG ĐẲNG THỨC ĐÁNG NHỚ

1. Rút gọn các biểu thức sau:

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

2. Chứng minh rằng:

a. a3 + b3 = (a + b)3 - 3ab (a + b)

b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)

Suy ra các kết quả:

i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c

3. Tìm giá trị nhỏ nhất của các biểu thức

a. A = 4x2 + 4x + 11

b. B = (x - 1) (x + 2) (x + 3) (x + 6)

c. C = x2 - 2x + y2 - 4y + 7

4. Tìm giá trị lớn nhất của các biểu thức

a. A = 5 - 8x - x2

b. B = 5 - x2 + 2x - 4y2 - 4y

5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c

b. Tìm a, b, c biết a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

6. Chứng minh rằng:

a. x2 + xy + y2 + 1 > 0 với mọi x, y

b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z

7. Chứng minh rằng:

x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.

8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

10. Rút gọn biểu thức:

A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ

1. Phân tích đa thức thành nhân tử:

a. x2 - x - 6

b. x4 + 4x2 - 5

c. x3 - 19x - 30

2. Phân tích thành nhân tử:

a. A = ab(a - b) + b(b - c) + ca(c - a)

b. B = a(b2 - c2) + b(c2 - a2) + c(a2 - b2)

c. C = (a + b + c)3 - a3 - b3 - c3

3. Phân tích thành nhân tử:

a. (1 + x2)2 - 4x (1 - x2)

b. (x2 - 8)2 + 36

c. 81x4 + 4

d. x5 + x + 1

4. a. Chứng minh rằng: n5 - 5n3 + 4n chia hết cho 120 với mọi số nguyên n.

b. Chứng minh rằng: n3 - 3n2 - n + 3 chia hết cho 48 với mọi số lẻ n.

5. Phân tích các đa thức sau đây thành nhân tử

1. a3 - 7a - 6

2. a3 + 4a2 - 7a - 10

3. a(b + c)2 + b(c + a)2 + c(a + b)2 - 4abc

4. (a2 + a)2 + 4(a2 + a) - 12

5. (x2 + x + 1) (x2 + x + 2) - 12

6. x8 + x + 1

7. x10 + x5 + 1

6. Chứng minh rằng với mọi số tự nhiên lẻ n:

1. n2 + 4n + 8 chia hết cho 8

2. n3 + 3n2 - n - 3 chia hết cho 48

7. Tìm tất cả các số tự nhiên n để:

1. n4 + 4 là số nguyên tố

2. n1994 + n1993 + 1 là số nguyên tố

8. Tìm nghiệm nguyên của phương trình:

1. x + y = xy

2. p(x + y) = xy với p nguyên tố

3. 5xy - 2y2 - 2x2 + 2 = 0

1

Bài 3:

a: \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

\(=x^4+2x^2+1-4x+4x^3\)

=(x^2+2x-1)^2

b: (x^2-8)^2+36

=x^4-16x^2+64+36

=x^4+20x^2+100-36x^2

=(x^2+10)^2-(6x)^2

=(x^2-6x+10)(x^2+6x+10)

c: 81x^4+4

=81x^4+36x^2+4-36x^2

=(9x^2+2)^2-36x^2

=(9x^2-6x+2)(9x^2+6x+2)

d: x^5+x+1

=(x^2+x+1)(x^3-x^2+1)

Đợi nghĩ ra cách ngắn hơn nhá :)) 

\(1)\)\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)

\(B=-7x^{15}+\left(8x^{15}-8x^{14}\right)+\left(8x^{13}-8x^{12}\right)+...+\left(8x^3-8x^2\right)+\left(8x-8\right)+3\)

\(B=-7x^{15}+8x^{14}\left(x-1\right)+8x^{12}\left(x-1\right)+...+8x^2\left(x-1\right)+8\left(x-1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^{14}+x^{12}+...+x^2+1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left[x^{12}\left(x^2+1\right)+x^8\left(x^2+1\right)+...+\left(x^2+1\right)\right]+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^2+1\right)\left(x^{12}+x^8+...+1\right)+3\)

\(B=-7x^{15}+8\left(x-1\right)\left(x^2+1\right)\left[x^8\left(x^4+1\right)+\left(x^4+1\right)\right]+3\)

\(x=7\)\(\Rightarrow\)\(x+1=8\)

\(B=-7x^{15}+\left(x+1\right)\left(x-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)+3\)

\(B=-7x^{15}+\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(B=-7x^{15}+\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\)

\(B=-7x^{15}+\left(x^8-1\right)\left(x^8+1\right)=-7x^{15}+x^{16}-1=x^{15}\left(x-7\right)-1=-1\)

...

19 tháng 4 2018

Bài 1:

ta có: x=7 => x+ 1 =8

thay vào biểu thức B

\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)      \(B=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...-x^3-x^2+x^2+x-5\)

\(B=x-5\)

\(B=7-5\)

\(B=2\)

Bài 2:

bn tham khảo link dưới nha:

https://olm.vn/hoi-dap/question/982834.html

Bài 3: Bn xem lại giúp mk nha!!! ( Chỗ nếu: thì....)

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

19 tháng 9 2018

Bài  1 : Thay 8 = x + 1 vào B

 => B = x15 - ( x + 1 ) x14 + ( x + 1 ) x13 - ( x + 1 ) x12 ......+ ( x + 1 ) x - 5

         = x15 - x15 - x14 + x14 + x13 - x13 ...... - x2 + x2 + x - 5

         = x - 5

Mà x = 7

=>  B = 7 - 5 = 2

Vậy B = 1

2 ) Gọi ba số cần tìm là a; a+1; a+2

Vì tích hai số đầu nhỏ hơn tích hai số sau là 50

=> a ( a + 1 ) = ( a + 1 )  ( a + 2 )  - 50

=> a2 + a = a2 + 3a + 2 - 50

=> a = 3a - 48

=> 2a = 48

=> a = 24

Vậy 3 số phải tìm là 24; 25; 26 

Bài 3 đề bài chưa rõ nếu cái gì ? Bạn sửa lại đi, mình sẽ giải

19 tháng 9 2020

1.B = x15 - 8x14 + 8x13 - 8x2 + ... - 8x2 + 8x - 5

B = x^15 - 7x^14 -x^14+7x^13+x^13-7x^12-...-x^2+7x+x-5

B = x^14(x-7) - x^14(x-7) +...+x^2(x-7)-x(x-7)+x-5

B = 7-5=2

2.Gọi 3 số cần tìm là theo thứ tự  a,b,c
Ta có:
b.c - a.b = 50
=> b.(c-a) = 50
Vì là 3 số tự nhiên liên tiếp
=> khoảng cách giữa a và c là 2
Ta có: 50 = 2 . 25
=> b = 25
=> a = 25 - 1 = 24
=> c = 25 + 1 = 26
Vậy 3 số đó là: 24;25;26 cần tìm 

3.(a+b)^2=2(a^2+b^2)
<=> a^2+b^2+2ab=2a^2+2b^2
<=> a^2+b^2=2ab
<=>a^2+b^2-2ab=0
<=>(a-b)^2=0
=> a-b=0
<=>a=b(đpcm)

Câu 3 thiếu đề nhé, đề đúng là: CMR nếu: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)thì \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

                                                                                       Giải

Ta có: \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)-\left(ax+by+cz\right)^2\)

\(=x^2a^2+x^2b^2+x^2c^2+y^2a^2+y^2b^2+y^2c^2+z^2a^2+z^2b^2+z^2c^2\)\(-a^2x^2-b^2y^2-c^2z^2-2axby-2bycz-2axcz\)

\(=x^2b^2+x^2c^2+y^2a^2+y^2c^2+z^2a^2+z^2b^2-2axby-2bycz-2axcz\)

\(=x^2b^2-2xbay+a^2y^2+y^2c^2-2ycbz+z^2b^2+x^2c^2-2cxaz+a^2z^2\)

\(=\left(xb-ay\right)^2+\left(yc-zb\right)^2+\left(xc-az\right)^2\)

Lại có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\Rightarrow\hept{\begin{cases}bx=ay\\yc=bz\\cx=az\end{cases}}\)

 \(\Rightarrow\left(bx-ay\right)^2+\left(yc-bz\right)^2+\left(cx-az\right)^2=\left(ay-ay\right)^2+\left(bz-bz\right)^2+\left(az-az\right)^2=0\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)-\left(ax+by+cz\right)^2=0\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

=> Đpcm

P/s: Nãy đánh xoq rồi tự nhiên olm lỗi, không gửi được, giờ đánh lại T.T Tức~

31 tháng 10 2017

2.24,25,26

31 tháng 10 2017

2) Gọi 3 số lần lượt là a;a+1;a+2 (a>0)

Theo đề bài, ta có:

\(a\left(a+1\right)=\left(a+1\right)\left(a+2\right)-50\)

\(\Leftrightarrow a^2+a=a^2+2a+a+2-50\)

\(\Leftrightarrow48=2a\Leftrightarrow a=24\)

Vậy: 3 số đó là 24;25;26

4 tháng 11 2019

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)

\(=x^{15}-7x^{14}-x^{14}+7x^{13}+x^{13}-7x^{12}+...\)

\(-7x^2-x^2+7x+x-5\)

\(=x^{14}\left(x-7\right)-x^{13}\left(x-7\right)+...-x\left(x-7\right)+\left(x-7\right)+2\)

\(=2\)

4 tháng 11 2019

Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2

Theo đề, ta có: \(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)

\(\Leftrightarrow a^2+3a+2-a^2-a=50\)

\(\Leftrightarrow2a+2=50\Leftrightarrow a+1=25\Leftrightarrow a=24\)

Vậy 3 số đó là 24; 25; 26

1.Rút gọn biểu thức: 2y-x-{2x-y-[y+3x-(5y-x)]} với x=a2+2ab+b2,y=a2-2ab+b2 2.Thực hiện phép tính: 3xn(4xn-1)-2xn-1(6xn-2-1) 3.Rút gọn biểu thức: a)10n+1-6.10n b)90.10k-10k+2+10k+1 c)2,5.5n-3+5n-6.5n-1 4.a)Chứng minh rằng 210+211+212chia hết cho 7 b)Viết 7.32 thành tổng của ba lũy thừa cơ số 2 với các số mũ là ba số tự nhiên liên tiếp 5.Tình 3 1/117.1/119-4/117.5 11/119-5/117.119+8/39 6.Tính giá trị...
Đọc tiếp

1.Rút gọn biểu thức:

2y-x-{2x-y-[y+3x-(5y-x)]} với x=a2+2ab+b2,y=a2-2ab+b2

2.Thực hiện phép tính:

3xn(4xn-1)-2xn-1(6xn-2-1)

3.Rút gọn biểu thức:

a)10n+1-6.10n

b)90.10k-10k+2+10k+1

c)2,5.5n-3+5n-6.5n-1

4.a)Chứng minh rằng 210+211+212chia hết cho 7

b)Viết 7.32 thành tổng của ba lũy thừa cơ số 2 với các số mũ là ba số tự nhiên liên tiếp

5.Tình 3 1/117.1/119-4/117.5 11/119-5/117.119+8/39

6.Tính giá trị x15-8x14+8x13-8x12+...-8x2+8x-5 với x=7

7.Rút gọn (a+b+c)(a2+b2+c2-ab-bc-ca)

8.Chứng minh hằng đẳng thức:

(a2+b2+c2-ab-bc-ca)(a+b+c)

=a(a2-bc)+b(b2-ca)+c(c2-ab)

9.Chứng minh hằng đẳng thức:

(100+a)(100+b)=(100+a+b).100+ab

Từ đó suy ra quy tắc nhân nhẩm hai số lớn hơn 100 một chút

10.Hãy xây những quy tắc nhân nhẩm hai số nhỏ hơn 100 một chút dựa vào hằng đẳng thức:

(100-a)(100-b)=(100-a-b).100+ab

11.Rút gọn biểu thức:(x+a)(x+b)(x+c)

biết rằng a+b+c=6

ab+bc+ca=-7

abc=-60

2
20 tháng 11 2019

4)

a) Ta có \(2^{10}+2^{11}+2^{12}\)

\(=2^{10}\left(1+2+4\right)=2^{10}\cdot7⋮7\)

Vậy: \(2^{10}+2^{11}+2^{12}\) chia hết cho 7(đpcm)

b) Ta có: 7*32=224=25+26+27

20 tháng 11 2019

7: Kết quả là \(a^3+b^3+c^3\)

19 tháng 8 2015

a, S= 2+2^2+2^3+....+2^2001+2^2002

      = (2+2^2)+(2^3+2^4)+...+(2^2001+2^2002)

      = (2+2^2)+2^2.(2+2^2)+...+2^2000.(2+2^2)

     = (2+2^2). (1+2^2+...+2^2000)

      = 6. (1+2^2+...+2^2000) chia hết cho 6 (ĐPCM)

Làm bạn với mình đi!

1. Rút gọn các biểu thức sau: a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12 b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12 c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2 2. Chứng minh rằng: a. a3 + b3 = (a + b)3 - 3ab (a + b) b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca) Suy ra các kết quả: i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c 3. Tìm giá trị nhỏ nhất của các biểu thức a. A = 4x2 + 4x + 11 b. B = (x - 1) (x...
Đọc tiếp

1. Rút gọn các biểu thức sau:

a. A = 1002 - 992+ 982 - 972 + ... + 22 - 12

b. B = 3(22 + 1) (24 + 1) ... (264 + 1) + 12

c. C = (a + b + c)2 + (a + b - c)2 - 2(a + b)2

2. Chứng minh rằng:

a. a3 + b3 = (a + b)3 - 3ab (a + b)

b. a3 + b3 + c3 - 3abc = (a + b + c) (a2 + b2 c2 - ab - bc - ca)

Suy ra các kết quả:

i. Nếu a3 + b3 + c3 = 3abc thì a + b + c = 0 hoặc a = b = c

Bài tập toán nâng cao lớp 8

3. Tìm giá trị nhỏ nhất của các biểu thức

a. A = 4x2 + 4x + 11

b. B = (x - 1) (x + 2) (x + 3) (x + 6)

c. C = x2 - 2x + y2 - 4y + 7

4. Tìm giá trị lớn nhất của các biểu thức

a. A = 5 - 8x - x2

b. B = 5 - x2 + 2x - 4y2 - 4y

5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c

b. Tìm a, b, c biết a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0

6. Chứng minh rằng:

a. x2 + xy + y2 + 1 > 0 với mọi x, y

b. x2 + 4y2 + z2 - 2x - 6z + 8y + 15 > 0 Với mọi x, y, z

7. Chứng minh rằng:

x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.

8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.

9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9.

10. Rút gọn biểu thức:

A = (3 + 1) (32 + 1) (34 + 1) ... (364 + 1)

11. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.

b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.

2
31 tháng 10 2017

1) a) \(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)

\(=\left(100-99\right)\left(100+99\right)+\left(99-98\right)\left(99+98\right)+....\left(2-1\right)\left(2+1\right)\)

\(=100+99+98+.....+2+1\)

\(=\dfrac{100.101}{2}=5050\)

2) a) \(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3a^2b+3ab^2-3a^2b+3ab^2=a^3+b^3=VT\)

b) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b+3ab^2+c^3-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(=\dfrac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)Khi \(a^3+b^3+c^3=3abc\) \(\Rightarrow\)
\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

i.i \(A=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{3}{abc}=3\)iii. \(a^3+b^3+c^3=3abc\Rightarrow\)
\(\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

TH1: a=b=c

\(B=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

TH2: a+b+c=0

\(B=\left(\dfrac{a+b}{b}\right)\left(\dfrac{b+c}{c}\right)\left(\dfrac{a+c}{a}\right)=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=-1\)

6 tháng 1 2018

chép trên vn doc àgianroi