K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2021

Phương trình tương đương

\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)

Nếu m = 0 thì phương trình vô nghiệm

Nếu m ≠ 0 thì S = {m + 2}

a: \(\Leftrightarrow mx-m^2+3m=mx-2m+6\)

\(\Leftrightarrow-m^2+5m-6=0\)

\(\Leftrightarrow\left(m-2\right)\left(m-3\right)=0\)

=>m=2 hoặc ,=3

b: Để phương trình là phương trình bậc hai một ẩn thì m+1<>0

hay m<>-1

\(\text{Δ}=\left(2m-2\right)^2-4\left(m+1\right)\left(m-2\right)\)

\(=4m^2-8m+4-4\left(m^2-m-2\right)\)

\(=4m^2-8m+4-4m^2+4m+8\)

=-4m+12

Để phương trình có hai nghiệm phân biệt thì -4m+12>0

=>-4m>-12

hay m<3

Để phương trình có nghiệm kép thì -4m+12=0

hay m=3

Để phương trình vô nghiệm thì -4m+12<0

hay m>3

23 tháng 1 2017

m = 0 phương trình trở thành

    -x - 2 = 0 ⇒ x = -2

    m ≠ 0 phương trình đã cho là phương trình bậc hai, có Δ = 4m + 1

    Với m < -1/4 phương trình vô nghiệm;

    Với m ≥ -1/4 nghiệm của phương trình là

Giải sách bài tập Toán 10 | Giải sbt Toán 10

23 tháng 8 2018

m(x – 4) = 5x – 2 ⇔(m - 5)x = 4m - 2

Nếu m - 5 ≠ 0 ⇔ m ≠ 5 thì phương trình có nghiệm duy nhất

x = (4m - 2)/(m - 5)

Nếu m – 5 = 0 ⇔ m = 5, phương trình trở thành:

0.x = 18 ⇒ phương trình vô nghiệm

Vậy với m ≠ 5 phương trình có nghiệm duy nhất

x = (4m - 2)/(m - 5)

Với m = 5 phương trình vô nghiệm.

30 tháng 9 2019

Điều kiện của bất phương trình là x ≥ 0

    Nếu m ≤ 1 thì m - 1 ≤ 0, bất phương trình đã cho nghiệm đúng với mọi x ≥ 0

    Nếu m > 1 thì m – 1 > 0, bất phương trình đã cho tương đương với √x ≤ 0 ⇔ x = 0

    Vậy: Nếu m ≤ 1 thì tập nghiệm của bất phương trình là [0; +∞)

     Nếu m > 1 thì tập nghiệm của bất phương trình là {0}

21 tháng 12 2021

\(PT\Leftrightarrow m^2x-m^2-5mx+m+6x+2=0\\ \Leftrightarrow x\left(m^2-5m+6\right)=m^2-m-2\\ \Leftrightarrow x\left(m-2\right)\left(m-3\right)=\left(m-2\right)\left(m+1\right)\)

Với \(m\ne2;m\ne3\)

\(PT\Leftrightarrow x=\dfrac{\left(m-2\right)\left(m+1\right)}{\left(m-2\right)\left(m-3\right)}=\dfrac{m+1}{m-3}\)

Với \(m=2\Leftrightarrow0x=0\left(vsn\right)\)

Với \(m=3\Leftrightarrow0x=4\left(vn\right)\)

Vậy với \(m\ne2;m\ne3\) thì PT có nghiệm duy nhất \(x=\dfrac{m+1}{m-3}\), với \(m=2\) thì PT có vô số nghiệm và với \(m=3\) thì PT vô nghiệm