Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giải:
Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)
\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)
\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)
+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)
+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)
+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(6,2;9,8;8,2\right)\)
Bài 1:
Gọi 4 phần đó lần lượt là a, b, c, d.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{12}{24}=\frac{1}{2}\)
\(\frac{a}{3}=\frac{1}{2}\Rightarrow a=\frac{3}{2}\)
\(\frac{b}{5}=\frac{1}{2}\Rightarrow b=\frac{5}{2}\)
\(\frac{c}{7}=\frac{1}{2}\Rightarrow c=\frac{7}{2}\)
\(\frac{d}{9}=\frac{1}{2}\Rightarrow d=\frac{9}{2}\)
Bài 2:
Gọi 3 cạnh của tam giác lần lượt là a, b, c.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{40,5}{15}=2,7\)
\(\frac{a}{3}=2,7\Rightarrow a=2,7\times3=8,1\)
\(\frac{a}{5}=2,7\Rightarrow2,7\times5=13,5\)
\(\frac{c}{7}=2,7\Rightarrow c=2,7\times7=18,9\)
Bài 1:
Gọi số 12 thành 4 phần lần lượt là:a,b,c,dvà a,b,c,d phải là số dương.
Ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}\) và a+b+c+d=12
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{12}{24}=0,5\)
- \(\frac{a}{3}=0,5.3=1,5\)
- \(\frac{b}{5}=0,5.5=2,5\)
- \(\frac{c}{7}=0,5.7=3,5\)
- \(\frac{d}{9}=0,5.9=4,5\)
Vậy số 12 thành 4 phần lần lượt là: 1,5;2,5;3,5;4,5.
Bài 2:
Gọi mỗi cạnh của tam giác lần lượt là:x(cm),y(cm),z(cm) và x,y,z phải là số dương.
Ta có :\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và x+y+z=40,5
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{40,5}{15}=2,7\)
- \(\frac{x}{3}=2,7.3=8,1\)
- \(\frac{y}{5}=2,7.5=13,5\)
- \(\frac{z}{7}=2,7.7=18,9\)
Vậy mỗi cạnh của tam giác lần lượt là: 8,1;13,5;18,9.
^...^ ^_^
bài 20 nè
gọi số tiền lãi là a,b,c tỷ lệ thuận 3;5;7=>a+b+c=225
ta có \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{225}{15}=15\)
=>a=15.3=45
b=15.5=75
c=105
bài 1 a)thế x=3;y=6 vào ta được a=2 đồ thị là y=2x
b)vẽ thì bạn nối từ gốc tọa độ đến đỉm đó thui
A= \(\frac{3}{2.2}\) = 0.75
A = \(\frac{3}{2.3}\) = 0.5
A= \(\frac{3}{2.5}\) = 0.3
Chúc bạn học tốt
bài 1
bạn xét: A chia hết cho 3 mà A không chia hết cho 9 vì từ 3 mũ 2 đến 3 mũ 20 chia hết cho 9 còn 3 ko chia hết cho 9.Nên suy ra A ko chính phương
bài 3 thì đầu bài phải là x,y thuộc N mới làm được
x-6=y(x+2)
x+2-y(x+2)=8
(x+2)(1-y)=8
từ đây dễ rùi bạn tự làm nhé
thay x=-1 ta có : \(\left(-x^2\right)+\left(-x^4\right)+\left(-x^6\right)+\left(-x^8\right)+....+\left(-x^{100}\right)\) =\(\left(-1^2\right)+\left(-1^4\right)+\left(-1^6\right)+\left(-1^8\right)+...+\left(-1^{100}\right)\) =1+1+1+1+...+1 = 50
Bài 3:
Gọi số đo các góc lần lượt là a,b,c
Theo đề, ta có: a/3=b/5=c/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{10}=\dfrac{a+b+c}{3+5+10}=\dfrac{180}{18}=10\)
Do đó: a=30; b=50; c=100