Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều rộng là x (x>0, mét)
=> chiều dài là: 3x
=> diện tích là: \(3x^2\)m2
Sau tăng
Chiều rộng là: x+4 m
chiều dài là: 3x+2 m
=> diện tích mới là: (x+4)(3x+2)=\(3x^2+14x+8\)m2
=> diện tích tăng thêm là: \(3x^2+14x+8-3x^2=14x+8=92\Leftrightarrow x=6\)
=> Chu vi miếng đất là: 2(x+3x)=8x=8.6=48 m
Mình làm bằng cách lớp 9 nhé :v
Gọi chiều dài và chiều rộng lần lượt là x , y ( x,y > 0 ; x,y thuộc N )
Chiều dài gấp 3 lần chiều rộng : \(x=3y\left(1\right)\)
Tăng chiều rộng 2m và giảm chiều dài 4m thì diện tích tăng thêm 28m2 :
\(\left(x-4\right)\left(y+2\right)=xy+28\left(2\right)\)
Từ 1 và 2 ta suy ra được hệ phương trình sau :
\(\hept{\begin{cases}x=3y\left(3\right)\\\left(x-4\right)\left(y+2\right)=xy+28\left(4\right)\end{cases}}\)
\(\left(4\right)< =>\left(x-4\right)\left(y+2\right)=xy+28\)
\(< =>\left(3y-4\right)\left(y+2\right)=3y^2+28\)
\(< =>3y^2+6y-4y-8=3y^2+28\)
\(< =>\left(3y^2+2y-8\right)-\left(3y^2+28\right)=0\)
\(< =>2y-8-28=0< =>2y-36=0\)
\(< =>2y=36< =>y=\frac{36}{2}=18\left(5\right)\)
Thay 5 vào 3 ta được : \(x=3y< =>x=18.3=54\)
Vậy chiều dài và chiều rộng lần lượt là : 54,18
Bài khó xơi trước để mát dạ đã rồi tính
\(3.\) Điều kiện để phương trình trên có nghĩa \(a\ne0;\) \(b\ne0\) và \(c\ne0\) (theo giả thiết)
Trừ \(1\) vào mỗi phân thức ở \(VT\) và trừ \(3\) cho \(VP\), ta được:
\(\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}+\frac{x-a-b-c}{c}=0\)
\(\Leftrightarrow\) \(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\) \(\left(\text{*}\right)\)
\(\text{*)}\) Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ne0\) thì \(\left(\text{*}\right)\) \(\Rightarrow\) \(x-a-b-c=0\), tức \(x=a+b+c\)
\(\text{*)}\) Nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) thì từ \(\left(\text{*}\right)\), ta suy ra phương trình trên có nghiệm luôn đúng với mọi \(x\)
Vậy, phương trình có nghiệm là \(x=a+b+c\) với trường hợp \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ne0\)
và \(S=R\) nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(1.\) Gọi \(x\) \(\left(m\right)\) là chiều rộng ban đầu của miếng đất hình chữ nhật.
nên chiều rộng của miếng đất sau khi tăng lên \(10\) \(\left(m\right)\) là \(x+10\) \(\left(m\right)\)
Vì chu vi của miếng đất là \(160\) \(\left(m\right)\) nên nửa chu vi của miếng đất đó sẽ bằng \(80\) \(\left(m\right)\)
Khi đó, chiều dài ban đầu: \(80-x\) \(\left(m\right)\) nên khi giảm đi \(10\) \(\left(m\right)\) thì chiều dài mới là \(70-x\) \(\left(m\right)\)
Điều kiện: \(x<70\)
Ta có phương trình:
\(\left(70-x\right)\left(x+10\right)-x\left(80-x\right)=200\) \(\Leftrightarrow\) \(x=25\) (thỏa mãn điều kiện)
Do đó, chiều dài ban đầu \(80-25=55\) \(\left(m\right)\)
Vậy, ......
ĐỀ ĐẠI SỐ 1 TIẾT
Bài 1: giải các phương trình sau
a) 4x(x-5) -6= 2x(2x-1)
↔ 4x2 -20x -6 = 4x2 -2x
↔ 4x2 -4x2 -20x + 2x= 6
↔ -18x=6
↔ x= \(\dfrac{-1}{3}\)
Vậy S= \(\dfrac{-1}{3}\)
b) \(\dfrac{3x-1}{2}\)= \(\dfrac{5x+4}{3}\)-2x MC= 6
↔ \(\dfrac{3\left(3x-1\right)}{3.2}\)= \(\dfrac{2\left(5x+4\right)}{3.2}\)- \(\dfrac{2x.6}{6}\)
↔ 3(3x-1) = 2(5x+ 4) - 2x.6
↔ 9x -3 =10x + 8 - 12x
↔ 9x - 10x + 12x= 8 +3
↔ 11x = 11
↔ x = 1
vậy tập nghiệm của phương trình là x = 1
c) ( x+ 2)2 -5x -10 = 0
↔ (x +2 )2 -5(x+2)=0
↔ ( x+2) ( x+2-5) =0
↔ (x+2) ( x-3) =0
↔ x +2 = 0 hay x-3=0
↔ x= -2 hay x= 3
Vậy phương trình có nghiệm là x=-2; x=3
Bài 2: giải
Gọi x + 15(m) là chiều dài ban đầu của hcn ( x <0)
→ x(m) là chiều rộng ban đầu của hình chữ nhật
⇒ Diện tích hình chữ nhật: Sbd = (x+ 15)x
= x2 + 15x (m)
Ta có chiều rộng lúc sau: x-3 (m)
chiều dài lúc sau : x + 15 +2(m)
⇒ Diện tích lúc sau : ( x - 3) ( x + 15+2)
= x2 + 15x + 2x - 3x - 45-6(m)
THEO ĐỀ BÀI TA CÓ : Sbđ - Sls = 61
↔ ( x2 + 15x) - ( x2 + 15x + 2x - 3x -45 -6) = 61
↔ x2 + 15x-x2 -15x-2x+3x+45+6=61
↔ x + 51= 61
↔ x = 10
⇒ x = 10 là chiều rộng (m)
⇒ x +15 ↔ 10 + 15 = 25 là chiều dài (m)
Bài 1: giải các phương trình sau
a) 4x(x-5)-6=2x(2x-1)<=>4x2-20x-6=4x2-2x<=>4x2-4x2 20x+2x=6<=>-18x=6<=>x=-3
Vậy Pt có tập no : S=\(\left\{-3\right\}\)