K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

What??!!!!!!!

Đây là bài toán lớp 1 ???

Bn có nhầm ko z??

19 tháng 6 2019

\(\sqrt{a^2+c^2}+\sqrt{b^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)

Cần CM : \(\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\ge\left|a+b\right|-\left|c+d\right|\)

\(\Leftrightarrow\)\(\left(a+b\right)^2+\left(c+d\right)^2\ge\left(a+b\right)^2+\left(c+d\right)^2-2\left|\left(a+b\right)\left(c+d\right)\right|\)

\(\Leftrightarrow\)\(\left|\left(a+b\right)\left(c+d\right)\right|\ge0\) ( luôn đúng \(\forall\left|a+b\right|\ge\left|c+d\right|\) ) 

Do đó \(VT\ge\left|a+b\right|-\left|c+d\right|=\left(\sqrt{\left|a+b\right|}\right)^2-\left(\sqrt{\left|c+d\right|}\right)^2\)

\(=\left(\sqrt{\left|a+b\right|}+\sqrt{\left|c+d\right|}\right)\left(\sqrt{\left|a+b\right|}-\sqrt{\left|c+d\right|}\right)\)

\(\ge2\sqrt[4]{\left|a+b\right|.\left|c+d\right|}\left(\sqrt{\left|a+b\right|}-\sqrt{\left|c+d\right|}\right)\)

\(=2\left(\sqrt[4]{\left|a+b\right|^3.\left|c+d\right|}-\sqrt[4]{\left|a+b\right|.\left|c+d\right|^3}\right)\) ( đpcm ) 

.

19 tháng 6 2019

Áp dụng bất đẳng thức Mincoxki ta có 

\(\sqrt{a^2+c^2}+\sqrt{b^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)

Buniacoxki \(\sqrt{\left(\left(a+b\right)^2+\left(c+d\right)^2\right)\left(1+1\right)}\ge|a+b|+|c+d|\)

Khi đó cần Cm

\(|a+b|+|c+d|\ge2\left(\sqrt{|a+b|^3|c+d|}-\sqrt{|c+d|^3|a+b|}\right)\)

Đặt \(\sqrt[4]{|a+b|}=x,\sqrt[4]{|c+d|}=y\left(x,y\ge0\right)\)

Cần Cm \(x^4+y^4\ge2\left(x^3y-xy^3\right)\left(1\right)\)

<=> \(x^3\left(x-2y\right)+y^4+2xy^3\ge0\left(2\right)\)

+ Nếu \(x\ge2y\)=> BĐT được CM

+ Nếu \(x\le2y\)

(1) <=> \(x^4+y^4+2xy^3\ge2x^3y\)

Mà \(x^4+x^2y^2\ge2x^3y\)

=> Cần CM \(y^4+2xy^3-x^2y^2\ge0\)

<=> \(y^4+xy^2\left(2y-x\right)\ge0\)luôn đúng do \(x\le2y\)

=> BĐT được CM

Dấu bằng xảy ra khi a=b=c=d=0

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

26 tháng 2 2022

cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?

26 tháng 5 2019

#)Trả lời :

   Toán lớp 1 ak a ??? chắc 2 năm ns em còn k lm đc :v 

26 tháng 5 2019

Bài 42 , Có \(m=\sqrt[3]{4+\sqrt{80}}-\sqrt[3]{\sqrt{80}-4}\)

    \(\Rightarrow m^3=4+\sqrt{80}-\sqrt{80}+4-3m\sqrt[3]{\left(4+\sqrt{80}\right)\left(\sqrt{80-4}\right)}\)

    \(\Leftrightarrow m^3=8-3m\sqrt[3]{80-16}\)

    \(\Leftrightarrow m^3=8-3m\sqrt[3]{64}\)

    \(\Leftrightarrow m^3=8-12m\)

    \(\Leftrightarrow m^3+12m-8=0\)

Vì vậy m là nghiệm của pt \(x^3+12x-8=0\)

Bài 44, c, \(D=\sqrt[3]{2+10\sqrt{\frac{1}{27}}}+\sqrt[3]{2-10\sqrt{\frac{1}{27}}}\)

\(\Rightarrow D^3=2+10\sqrt{\frac{1}{27}}+2-10\sqrt{\frac{1}{27}}+3D\sqrt[3]{\left(2+10\sqrt{\frac{1}{27}}\right)\left(2-10\sqrt{\frac{1}{27}}\right)}\)

\(\Leftrightarrow D^3=4+3D\sqrt[3]{4-\frac{100}{27}}\)

\(\Leftrightarrow D^3=4+3D\sqrt[3]{\frac{8}{27}}\)

\(\Leftrightarrow D^3=4+2D\)

\(\Leftrightarrow D^3-2D-4=0\)

\(\Leftrightarrow D^3-4D+2D-4=0\)

\(\Leftrightarrow D\left(D^2-4\right)+2\left(D-2\right)=0\)

\(\Leftrightarrow D\left(D-2\right)\left(D+2\right)+2\left(D-2\right)=0\)

\(\Leftrightarrow\left(D-2\right)\left[D\left(D+2\right)+2\right]=0\)

\(\Leftrightarrow\left(D-2\right)\left(D^2+2D+2\right)=0\)

\(\Leftrightarrow\left(D-2\right)\left[\left(D+1\right)^2+1\right]=0\)

Vì [....] > 0 nên D - 2 = 0 <=> D = 2 

Ý d làm tương tự nhá

29 tháng 12 2015

lớp 1 chưa hok đâu bn tick nha

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM

6 tháng 8 2018

Vãi cả "Toán Lớp 1"

26 tháng 2 2022

đây đích thực có phải lớp 1 ko ak?

chắc bn đây phải cấp 2 r

9 tháng 1 2021

bạn trung học hay tiểu học vậy