Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{1}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
Dấu '=' xảy ra khi x=5/2
b: \(B=x^2-4x+4+y^2-8y+16-14\)
\(=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu '=' xảy ra khi x=2 và y=4
Bài 4:
a) Ta có: \(x^3+6x^2+12x+8\)
\(=x^3+2x^2+4x^2+8x+4x+8\)
\(=x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+4x+4\right)\)
\(=\left(x+2\right)^3\)
b) Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-x^2-2x^2+2x+x-1\)
\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1\right)\)
\(=\left(x-1\right)^3\)
c) Ta có: \(1-9x+27x^2-27x^3\)
\(=1-3x-6x+18x^2+9x^2-27x^3\)
\(=\left(1-3x\right)-6x\left(1-3x\right)+9x^2\left(1-3x\right)\)
\(=\left(1-3x\right)\left(1-6x+9x^2\right)\)
\(=\left(1-3x\right)^3\)
d) Ta có: \(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)
\(=x^3+3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)
\(=\left(x+\frac{1}{2}\right)^3\)
e) Ta có: \(27x^3-54x^2y+36xy^2-8y^3\)
\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=\left(3x-2y\right)^3\)
1: \(=\left(x-1\right)\left(3x+7x^2\cdot2\right)=\left(x-1\right)\cdot x\cdot\left(3+14x\right)\)
2: \(=\left(x-y\right)\left(x^2+1\right)\)
3: \(=4x\cdot\left(x-2y\right)-8y\left(x-2y\right)\)
\(=4\left(x-2y\right)\left(x-2y\right)=4\left(x-2y\right)^2\)
5: \(=x^2\left(25-\dfrac{1}{81}y^2\right)=x^2\left(5-\dfrac{1}{9}y\right)\left(5+\dfrac{1}{9}y\right)\)
\(x^3+8y^3\\ =x^3+\left(2y\right)^3\\ =\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(8y^3-125\\ =\left(2y\right)^3-5^3\\ =\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(a^6-b^3\\ =\left(a^2\right)^3-b^3\\ =\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
\(8x^3-\frac{1}{8}\\ =\left(2x\right)^3-\left(\frac{1}{2}\right)^3\\ =\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
\(x^{32}-1\\ =\left(x^{16}\right)^2-1^2\\ =\left(x^{16}-1\right)\left(x^{16}+1\right)\\ =\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
\(4x^2+4x+1\\ =\left(2x+1\right)^2\)
\(x^2-20x+100\\ =\left(x-10\right)^2\)
\(y^4-14y^2+49\\ =\left(y^2-7\right)^2\)