K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

Hình dễ tự vẽ nhé bạn 

a ) Do \(DH\perp AC\Rightarrow\widehat{AHD}=90^o\)

Xét \(\Delta ABD\) và \(\Delta AHD\) có :
\(\widehat{BAD}=\widehat{HAD}\) ( AD là tia p/g )

AD là cạnh chung

\(\widehat{ABD}=\widehat{AHD}\left(=90^o\right)\)

nên \(\Delta ABD=\Delta AHD\left(g.c.g\right)\)

b ) Gọi K là giao điểm của BH và AD 

Xét \(\Delta BAK\)và \(\Delta HAK\) có :

AB = AH ( do \(\Delta ABD=\Delta AHD\))

\(\widehat{BAK}=\widehat{HAK}\) ( AD là tia p/g )

AK là cạnh chung

nên \(\Delta BAK=\Delta HAK\left(c.g.c\right)\)

=> BK = HK  ( 1 )

=> \(\widehat{AKB}+\widehat{AKH}=180^o\) ( hai góc kề bù )
     \(\widehat{AKB}+\widehat{AKB}=180^o\)

    \(\widehat{AKB}.2=180^o\)

\(\Rightarrow\widehat{AKB}=\frac{180^o}{2}=90^o\) ( 2 )

Từ ( 1 ) và ( 2 ) => AD là đường trung trực của BH 

c ) Xét \(\Delta BDI\) và \(\Delta HDC\) có :

\(\widehat{DBI}=\widehat{DHC}\left(=90^o\right)\)

BD = HD ( do \(\Delta ABD=\Delta AHD\) )

\(\widehat{BDI}=\widehat{HDC}\) ( hai góc đối đỉnh )

nên \(\Delta BDI=\Delta HDC\left(g.c.g\right)\)

=> DI = DC

=> \(\Delta DIC\)cân tại D

e ) Gọi M là điểm AD cắt IC

Ta có : 

AI = AB + BI 

AC = AH + HC 

mà AB = AH ( \(\Delta ABD=\Delta AHD\))

      BI = HC ( \(\Delta BDI=\Delta HDC\) )

=> AI = AC 

=> \(\Delta AIC\) cân tại A 

Lại có : \(CB\perp AI\)=> CB là đường cao ứng với cạnh AI

             \(IH\perp AC\)=> IH là đường cao ứng với cạnh AC

=> AM là đường cao thứ ba ( hay AD )

=> AM \(\perp\)IC

=> \(AD\perp IC\)

Tớ bổ sung ý d) cho Đường Tịch nè:

Ta có : tam giác DIC cân tại D 

=> ID = DC

Mà BD = HD (cmt)

=> BD = HD

Mà ta có BC = BD + DC

IH = ID + DH

=> BC = IH 

Xét tam giác vuông HIC và tam giác vuông BCI ta có : 

BC = IH 

IC chung

IBC = CHI = 90 độ

=> Tam giác HIC = tam giác BCI ( g.c.g) 

=> BI = HC (tg ứng)

Xét tam giác AKB và tam giác AKH ta có 

=> BAD = HAD ( AD là pg)

AK chung

AKB = AKH = 90 độ

=> Tam giác AKB = tam giác AKH (g.c.g)

=> AB =  AK 

Mà AI = AK + BI

AC = AH + HC 

=> AI = AC 

=> AIC cân tại A 

=> AIC = ACI 

Ta có AIC = ACI = 180 - A

Ta có AK = AH (cmt)

=> Tam giác BAH cân tại B 

=> ABH = AHB 

=> ABH = AHB = 180 - A

=> ABH = AHB = AIC = ACI ( cùng bằng 180 - A)

=> ABH = AIC 

Mà 2 góc này ở vị trí đồng vị

=> BH //IC

=> (dpcm)

10 tháng 4 2018

a) vì DI là đường trung trực của BC

 suy ra {DI vuông góc vs BC tại I 

            {góc DIB = góc DIC=90độ IB=IC( gt)

xét tam giác DIB và tam giác DIC có 

IB=IC(gt)

góc DIB=góc DIC=90độ

ADI là cạnh chung 

suy ra tam giác DIB = tam giác DIC (c.g.c)

suy ra DC=DB (2 cạnh tương ứng )

xét tam giác ABC có : DC=DB(chứng minh trên)

suy ra tam giác DBC cân tại D

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

17 tháng 12 2021

a: Ta có: D nằm trên đường trung trực của BC

nên DB=DC

 

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc HAB chung

=>ΔAHB=ΔAKC

=>AH=AK

b:

Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>AI vuông góc BC tại M

Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có

BC chung

KC=HB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác

c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC

11 tháng 5 2023

Bạn ơi cho hỏi là Ak/Ab = AH/Ac là sao ạ

a: Xet ΔABD vuông tại A và ΔAHD vuông tại H có

AD chung

góc BAD=góc HAD

=>ΔABD=ΔAHD

c: Xét ΔDBI vuông tại B và ΔDHC vuông tại H có

DB=DH

góc BDI=góc HDC

=>ΔBDI=ΔHDC

=>DI=DC và BI=HCC

d: Xét ΔAIC có AB/BI=AH/HC

nên BH//IC

g: BC+AB>AC

=>BC+2AB>AC+AB

mà AB<AD<AC

nên BC>AC+AD-2AB