K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

a)A=3^0+3^1+3^2+3^3+...+3^2012

A=1+3+3^2+3^3+..+3^2012

3A=3+3^2+3^3+3^4+..+3^2013

3A-A=3+3^2+3^3+3^4+..+3^2013-1-3-3^2-3^3-...-3^2012

2A=3^2013-1

A=\(\frac{3^{2013}-1}{2}\)

B=3^2013

=> A>B

b) A=1+5+5^2+5^3+..+5^99+5^100

5A=5+5^2+5^3+5^4+...+5^100+5^101

5A-A=5+5^2+5^3+5^4+..+5^100+5^101-1-5-5^2-5^3-..-5^99-5^100

4A=5^101-1

A=\(\frac{5^{101}-1}{4}\)

B=5^101/4

=> A<B

15 tháng 6 2016

nhân 3A lên

nhân 5B lên

30 tháng 7 2017

A = 1 + 3 + 32 + 33 + ... + 3100 

2A = 3 + 32 + 33 + 34 + ... + 3101 

A = 2A - A = 3101 - 1

Vậy A = 3101 - 1

22 tháng 10 2015

a)Ta có:S1=5+52+53+…+599+5100

=>5.S1=52+53+54+…+5100+5101

=>5.S1-S1=52+53+54+…+5100+5101-5-52-53-…-599-5100

=>4.S1=5101-5

=>\(S_1=\frac{5^{101}-5}{4}\)

b)S2=2+22+23+…+299+2100

=>2.S2=22+23+24+…+2100+2101

=>2.S2-S2=22+23+24+…+2100+2101-2-22-23-…-299-2100

=>S2=2101-2

22 tháng 10 2015

2S1=52+53+54+....+5100+5101

2S1-s1=5101-5

S1=5101-5

b) S2=2101-2

1 tháng 8 2016

a) 

\(A=\frac{6^3+3.6^3+3^3}{-13}=\frac{3^3.2^3+3^3.2^2+3^3}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=-27\)

b)

A=1+5+52+53+...+550

5A=5+52+53+...551

5A-A=(5+52+53+...+551)-(1+5+52+...+550)

4A=551-1

A=\(\frac{5^{51}-1}{4}\)

c)

A=2100-299+298-...+22-2

2A=2101-2100+299-...+23-22

2A+A=(2101-2100+...+23-22)+(2100-299+...+22-2)

3A=2101-2

A=\(\frac{2^{101}-2}{3}\)

 
1 tháng 8 2016

b.

\(A=1+5+5^2+5^3+...+5^{49}+5^{50}\)

\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)

\(5A-A=\left(5+5^2+5^3+...+5^{50}+5^{51}\right)-\left(1+5+5^2+..+5^{50}\right)\)

\(4A=5^{51}-1\)

\(A=\frac{5^{51}-1}{4}\)

24 tháng 9 2017

quên, còn bài chứng minh!ahihi

Bài 2: 

ta có:

A = \(\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(...\right)\)( nếu vít nốt 3 số cuối thì ko đủ nên tự bn điền ha)

A =\(\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+\left(...\right)\)

A=\(13+3^3.13+...+3^{1998}.13\)

A=\(13.\left(1+3^3+...+3^{1998}\right)⋮13\)

suy ra A chia hết cho 13

24 tháng 9 2017

a) đặt A =\(1+2+2^2+...+2^{99}\)

ta có:

2A = \(2+2^2+2^3+...+2^{99}+2^{100}\)

2A-A=\(\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

2A-A=\(2+2^2+...+2^{100}-1-2-...-2^{99}\)

A=\(2^{100}-1-2^{99}\)

ukm lâu r ko hay làm mấy bài dạng ntn nên mk quên rùi, ko pik đúng ko! v nên có sai cũng đừng ném gạch bn nhé! mấy bài sau làm tương tự! 

23 tháng 11 2018

1. D = ( 5 + 5^2 ) + ... + ( 5^99 + 5^100 )

D = 5 ( 1 + 2 ) + ... + 5^99 ( 1 + 2 )

D = 5 . 6 + ... + 5^99 . 6

D = 6 ( 5 + ... + 5^99 ) chia hết cho 6 ( đpcm )

2. gợi ý : nhóm 5 số vào một

3. Đề phải là 165 - 215

165 - 215

= (24)5 - 215

= 220 - 215

= 215 ( 25 - 1 )

= 215 . 31 chia hết cho 31

4. đề sai

29 tháng 11 2015

Ta có: A=(51+52)+(53+54)+..............+(599+5100)

=> A=1.(51+52)+52.(5+52)+...........+598.(51+52)

=> A=1.30+52.30+........+598.30

=> A=1.5.6+52.5.6+............+598.5.6

=> A=6.(5+53+.............+599)

=> A chia hết cho 6

-=> ĐPCM

29 tháng 11 2015

Ta có : \(A=5\left(5+1\right)+5^3\left(5+1\right)+....+5^{99}\left(5+1\right)\)

<=> A = .... chia het cho 6

tick cho minh cai