K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 10 2020

Lời giải:

a)

$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$

$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$

$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$

$=(y+z)(yz+xz-xy-x^2)$

$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$

b)

$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$

$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$

$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$

$=(a+2b)(2ab-ac+c^2-2bc)$

$=(a+2b)[2b(a-c)-c(a-c)]$

$=(a+2b)(2b-c)(a-c)$

c)

$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$

$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$

17 tháng 8 2020

Lời giải:

a)

$yz(y+z)+xz(z-x)-xy(x+y)=yz(y+z)+xz^2-x^2z-x^2y-xy^2$

$=yz(y+z)+x(z^2-y^2)-x^2(z+y)$

$=yz(y+z)+x(z-y)(z+y)-x^2(z+y)$

$=(y+z)(yz+xz-xy-x^2)$

$=(y+z)[z(x+y)-x(x+y)]=(y+z)(x+y)(z-x)$

b)

$2a^2b+4ab^2-a^2c+ac^2-4b^2c+2bc^2-4abc$

$=(2a^2b+4ab^2)-(a^2c+2abc)+(ac^2+2bc^2)-(4b^2c+2abc)$

$=2ab(a+2b)-ac(a+2b)+c^2(a+2b)-2bc(a+2b)$

$=(a+2b)(2ab-ac+c^2-2bc)$

$=(a+2b)[2b(a-c)-c(a-c)]$

$=(a+2b)(2b-c)(a-c)$

c)

$y(x-2z)^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y[(y-2z)+(x-y)]^2+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x-y)^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=y(y-2z)^2+y(x+y)^2-4xy^2+2y(y-2z)(x-y)+8xyz+x(y-2z)^2-2z(x+y)^2$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-4xy(y-2z)+2y(y-2z)(x-y)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)+2y(y-2z)(x-y-2x)$

$=(y-2z)^2(x+y)+(x+y)^2(y-2z)-2y(y-2z)(x+y)$

$=(x+y)(y-2z)[(y-2z)+(x+y)-2y]=(x+y)(y-2z)(x-2z)$

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)

14 tháng 8 2018

a) Sửa đề \(x^3-4x^2+8x-8\)

\(=\left(x^3-8\right)-\left(4x^2-8x\right)\)

\(=\left(x-2\right)\left(x^2+2x+4\right)-4x\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+4-4x\right)\)

\(=\left(x-2\right)\left(x^2-2x+4\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

a)

$(a-x)y^3-(a-y)x^3+(x-y)a^3=(a-x)y^3-[(a-x)+(x-y)]x^3+(x-y)a^3$

$=(a-x)(y^3-x^3)+(x-y)(a^3-x^3)$

$=(a-x)(y-x)(y^2+xy+x^2)-(y-x)(a-x)(a^2+ax+x^2)$

$=(a-x)(y-x)(y^2+xy+x^2-a^2-ax-x^2)$

$=(a-x)(y-x)(y^2+xy-ax-a^2)=(a-x)(y-x)(y-a)(y+a+x)$

b)

$bc(b+c)+ca(c+a)+ba(a+b)+2abc$

$=bc(b+c+a)+ca(c+a+b)+ba(a+b)$

$=(bc+ac)(b+c+a)+ba(a+b)=c(b+a)(b+c+a)+ba(a+b)=(a+b)[c(a+b+c)+ab]$

$=(a+b)[c(a+c)+b(a+c)]=(a+b)(b+c)(c+a)$

c)

$x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz$

$=xy(x+y)+xz(x+z)+yz(y+z)+2xyz$

$=(x+y)(y+z)(x+z)$ (như phần b)

29 tháng 3 2020

c/\(=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

PTĐTTNT chỉ cần có kết quả là bạn có thể tự trình bày

20 tháng 8 2015

bạn nên viết ra 2 câu 1 bài

23 tháng 11 2017

1. x5 + x + 1

=x5-x2+x2+x+1

=(x5-x2)+(x2+x+1)

=x2(x3-1)+(x2+x+1)

=x2(x-1)(x2+x+1)+(x2+x+1)

=(x2+x+1)[x2(x-1)+1]

=(x2+x+1)(x3-x2+1)

2. x5 + x4 +1

=x5+x4+x3-x3+1

=(x5+x4+x3)-(x3-1)

=x3(x2+x+1)-(x-1)(x2+x+1)

=(x2+x+1)[x3-(x-1)]

=(x2+x+1)(x3-x+1)