K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2022

giúp mik vs

27 tháng 3 2022

`Answer:`

\(-3x^5-2x^3-7x=0\)

\(\Leftrightarrow3x^5+2x^3+7x=0\)

\(\Leftrightarrow x.\left(3x^4+2x^2+7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x^4+2x^2+7=0\text{(Vô lý)}\end{cases}}\)

a: 3-2|4x-5|=2/6

=>2|4x-5|=3-1/3=8/3

=>|4x-5|=4/3

=>4x-5=4/3 hoặc 4x-5=-4/3

=>4x=19/3 hoặc 4x=11/3

=>x=19/12 hoặc x=11/12

c: (7-3x)(2x+1)=0

=>2x+1=0 hoặc -3x+7=0

=>x=-1/2 hoặc x=-7/3

d: 2x(5-3x)>0

=>x(3x-5)<0

=>0<x<5/3

6 tháng 7 2017

b) \(\left|4-7x\right|-\dfrac{3}{2}:5=\left|-1\dfrac{1}{3}\right|\)

\(\left|4-7x\right|-\dfrac{3}{10}=\dfrac{4}{3}\)

\(\left|4-7x\right|=\dfrac{49}{30}\) (*)

+) Nếu 4 - 7x \(\ge\) 0 \(\Rightarrow x\le\dfrac{4}{7}\)

PT (*) \(\Leftrightarrow4-7x=\dfrac{49}{30}\)

\(-7x=-\dfrac{71}{30}\)

x = \(\dfrac{71}{210}\) (t/m)

+) Nếu \(4-7x< 0\Rightarrow x>\dfrac{4}{7}\)

Pt (*) \(\Leftrightarrow-4+7x=\dfrac{49}{30}\)

x = \(\dfrac{169}{210}\) (t/m)

Vậy x=\(\dfrac{71}{210}\) hoặc x = \(\dfrac{169}{210}\)

20 tháng 9 2020

ngu thế à bạn

27 tháng 9 2019

a, \(\left|2x-3\right|=\left|3x-7\right|\)

\(\Rightarrow\orbr{\begin{cases}2x-3=3x-7\\2x-3=7-3x\end{cases}\Rightarrow}\orbr{\begin{cases}-x=-4\\5x=10\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=2\end{cases}\Rightarrow}x=2\)

b, \(\left|7x-1\right|-\left|2x-5\right|=0\)

\(\left|7x-1\right|=\left|2x-5\right|\)

\(\Rightarrow\orbr{\begin{cases}7x-1=2x-5\\7x-1=5-2x\end{cases}\Rightarrow}\orbr{\begin{cases}5x=-4\\9x=6\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{-4}{5}\\x=\frac{2}{3}\end{cases}}\)

c, \(\left|3x-1\right|+\left|4+3x\right|=0\)

Vì \(\left|3x-1\right|\ge0\)\(\left|4+3x\right|\ge0\)

\(\Rightarrow\left|3x-1\right|+\left|4+3x\right|\ge0\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}3x-1=0\\4+3x=0\end{cases}\Rightarrow}\hept{\begin{cases}3x=1\\3x=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{3}\\x=\frac{-4}{3}\end{cases}}\)(loại)

d, 2x + 1 = 25 => 2x = 24 => x = 12

đề là thế này? 

(2x + 1)2 = 25

\(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}\Rightarrow}\orbr{\begin{cases}2x=4\\2x=-6\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

a: x+1>0

=>x>-1

b: -2x-3<0

=>-2x<3

=>x>-3/2

c: 4x+5>0

=>4x>-5

=>x>-5/4

d: -7x-3<0

=>-7x<3

=>x>-3/7

k: 3x+7>0

=>3x>-7

=>x>-7/3

l: -4x-1<0

=>-4x<1

=>x>-1/4

5 tháng 7 2017

a) * Nếu 4x - 5 \(\ge\) 0 thì x \(\ge\) \(\dfrac{5}{4}\)

\(\Leftrightarrow\) \(3-2\left(4x-5\right)=\dfrac{2}{6}\)

\(\Leftrightarrow\) \(-8x=-3-10+\dfrac{2}{6}\)

\(\Leftrightarrow\) x = \(\dfrac{19}{12}\) (t/m)

* Nếu 4x - 5 < 0 thì x < \(\dfrac{5}{4}\)

\(\Leftrightarrow\) \(3-2\left(-4x+5\right)=\dfrac{2}{6}\)

\(\Leftrightarrow\) \(3+8x-10=\dfrac{2}{6}\)

\(\Leftrightarrow\) x = \(\dfrac{11}{12}\) (t/m)

b) Không hiểu đề :v

c) \(\left(7-3x\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d) \(2x\left(5-3x\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{5}{3}\end{matrix}\right.\)

\(\Rightarrow0< x< \dfrac{5}{3}\)

e) \(\left(4-2x\right)\left(5x+3\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}4-2x< 0\\5x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}4-2x>0\\5x+3< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x< -\dfrac{3}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x>-\dfrac{3}{5}\end{matrix}\right.\end{matrix}\right.\)

Loại TH1, nhận TH2

Vậy \(-\dfrac{3}{5}< x< 2\)

g) \(\left|3x+1\right|+\left|1-3x\right|=0\) (1)

* Nếu x < \(\dfrac{-1}{3}\)

PT (1) \(\Leftrightarrow-3x-1-1+3x=0\)

0x - 2 = 0

0x = 2 \(\Rightarrow\) PT vô nghiệm

* Nếu \(\dfrac{-1}{3}\le x\le\dfrac{1}{3}\)

PT (1) \(\Leftrightarrow3x+1-1+3x=0\)

6x = 0

x = 0 (t/m)

* Nếu x > \(\dfrac{1}{3}\)

PT (1) \(\Leftrightarrow3x+1+1-3x=0\)

0x + 2 = 0

0x = -2

PT vô nghiệm.

Vậy x = 0

5 tháng 7 2017

a, \(3-2\left|4x-5\right|=\dfrac{2}{6}\)

\(\Rightarrow2\left|4x-5\right|=\dfrac{8}{3}\)

\(\Rightarrow\left|4x-5\right|=\dfrac{4}{3}\)

+) Xét \(x\ge\dfrac{5}{4}\) có:

\(4x-5=\dfrac{4}{3}\Rightarrow4x=\dfrac{19}{3}\Rightarrow x=\dfrac{19}{12}\) ( t/m )

+) Xét \(x< \dfrac{5}{4}\) có:

\(4x-5=\dfrac{-4}{3}\Rightarrow4x=\dfrac{11}{3}\Rightarrow x=\dfrac{11}{12}\) ( t/m )

Vậy...

b, tương tự

c, \(\left(7-3x\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}7-3x=0\\2x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy...

d, \(2x\left(5-3x\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}2x>0\\5-3x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}2x< 0\\5-3x< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< \dfrac{3}{5}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x>\dfrac{3}{5}\end{matrix}\right.\) (loại )

Vậy \(0< x< \dfrac{3}{5}\)

e, tương tự

g, \(\left|3x+1\right|+\left|1-3x\right|=0\)

\(\Rightarrow\left|3x+1\right|+\left|3x-1\right|=0\)

+) Xét \(x\ge\dfrac{1}{3}\) có:

\(3x+1+3x-1=0\)

\(\Rightarrow6x=0\)

\(\Rightarrow x=0\) ( ko t/m )
+) Xét \(\dfrac{-1}{3}\le x< \dfrac{1}{3}\) có:

\(3x+1+1-3x=0\)

\(\Rightarrow2=0\) ( vô lí )

+) Xét \(x< \dfrac{-1}{3}\) có:

\(-3x-1+1-3x=0\)

\(\Rightarrow-6x=0\Rightarrow x=0\) ( ko t/m )

Vậy ko có giá trị x thỏa mãn đề bài

5 tháng 7 2017

ai giúp mình với nhanh lên các bạn

31 tháng 7 2023

|5\(x\) - 4| = |\(x+2\)|

\(\left[{}\begin{matrix}5x-4=x+2\\5x-4=-x-2\end{matrix}\right.\)

\(\left[{}\begin{matrix}4x=6\\6x=2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

vậy \(x\in\) { \(\dfrac{1}{3};\dfrac{3}{2}\)}

31 tháng 7 2023

|2\(x\) - 3| - |3\(x\) + 2| = 0

|2\(x\) - 3| = | 3\(x\) + 2|

\(\left[{}\begin{matrix}2x-3=3x+2\\2x-3=-3x-2\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{5}\end{matrix}\right.\)

vậy \(x\in\){ -5; \(\dfrac{1}{5}\)}

 

 

15 tháng 10 2020

a) Ta có |2x + 3x| - 3x + 2 = 0

=> |2x + 3x| = 3x - 2

ĐK : 3x - 2 \(\ge0\Rightarrow x\ge\frac{2}{3}\)

Khi đó |2x + 3x| = 3x - 2

<=> \(\orbr{\begin{cases}2x+3x=3x-2\\2x+3x=-3x+2\end{cases}}\Rightarrow\orbr{\begin{cases}2x=-2\\8x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{4}\end{cases}}\)(loại)

Vậy không tìm được giá trị của x thỏa mãn

b) ĐK 4x - 3 \(\ge0\Rightarrow x\ge\frac{3}{4}\)

Khi đó |2 + 3x| = 4x - 3

<=> \(\orbr{\begin{cases}2+3x=4x-3\\2+3x=-4x+3\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=\frac{1}{7}\left(\text{loại}\right)\end{cases}}\)

Vậy x = 5 là giá trị cần tìm

c) |7x + 1| - |5x + 6| = 0

=> |7x + 1| = |5x + 6|

=> \(\orbr{\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}}\)

Vậy \(x\in\left\{\frac{5}{2};-\frac{7}{12}\right\}\)là giá trị cần tìm

16 tháng 10 2020

a) \(\left|2x+3x\right|-3x+2=0\)

<=> \(\left|5x\right|-3x+2=0\)

<=> \(\orbr{\begin{cases}5x-3x+2=0\left(x\ge0\right)\\-5x-3x+2=0\left(x< 0\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\\x=\frac{1}{4}\end{cases}\left(ktm\right)}\)

b) \(\left|2+3x\right|=4x-3\)

<=> \(\orbr{\begin{cases}2+3x=4x-3\left(x\ge-\frac{2}{3}\right)\\-2-3x=4x-3\left(x< -\frac{2}{3}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}3x-4x=-3-2\\-3x-4x=-3+2\end{cases}}\)

<=> \(\orbr{\begin{cases}-x=-5\\-7x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=\frac{1}{7}\left(ktm\right)\end{cases}}\)

c) \(\left|7x+1\right|-\left|5x+6\right|=0\)

<=> \(\left|7x+1\right|=\left|5x+6\right|\)

<=> \(\orbr{\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}}\)

AH
Akai Haruma
Giáo viên
25 tháng 6 2020

Đúng rồi bạn nhé.

25 tháng 6 2020

cảm ơn b