Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)
~ ~ ~ ~ ~
\(abc=ab+bc+ca\)
\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:
\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)
\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)
\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)
\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)
\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{3}{16}\) (đpcm)
Dấu "=" xảy ra khi a = b = c
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(=\left[\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)
\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(x-1\right)^2}{2}\)
\(=\left[\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}.\left(\sqrt{x}-1\right)}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)
b) Với \(0< x< 1\)\(\Rightarrow0< \sqrt{x}< 1\)
\(\Rightarrow\sqrt{x}-1< 0\)
mà \(\sqrt{x}>0\)\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-1\right)< 0\)
\(\Rightarrow-\sqrt{x}.\left(\sqrt{x}-1\right)>0\)\(\Rightarrow P>0\)( đpcm )
c) \(P=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}\)
\(=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\)
\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\)\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\)\(\Leftrightarrow x=\frac{1}{4}\)( thỏa mãn ĐKXĐ )
Vậy \(maxP=\frac{1}{4}\)\(\Leftrightarrow x=\frac{1}{4}\)
ĐKXĐ \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)
a, Ta có \(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)
\(P=\left(\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)
\(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)
\(P=\frac{2\sqrt{x}-2x}{\sqrt{2}}\)
\(P=\sqrt{2x}-\sqrt{2}x\)
\(P=\sqrt{2x}\left(1-\sqrt{x}\right)\)
b, Vì \(0< x< 1\Rightarrow\sqrt{x}< 1\Rightarrow1-\sqrt{x}< 1\)
\(\Rightarrow\sqrt{2x}\left(1-\sqrt{x}\right)>0\)
c, Ta có \(P=-\sqrt{2}\left(x-\sqrt{x}\right)\)
\(P=-\sqrt{2}\left(x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)\)
\(P=-\sqrt{2x}\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{\sqrt{8}}\le\frac{1}{\sqrt{8}}\)
Dấu = xảy ra \(\Leftrightarrow\)\(\sqrt{x}-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{4}\)
vậy GTLN của P là \(\frac{1}{\sqrt{8}}\)với x=\(\frac{1}{4}\)
Đặt \(a=x,b=\frac{1}{x}\) thì ta có ab = 1
\(a-b=x-\frac{1}{x}=\frac{x^2-1}{x}=\frac{\left(x-1\right)\left(x+1\right)}{x}\). Vì \(x>1\) nên ta có \(a-b>0\)
\(3\left(a^2-b^2\right)< 2\left(a^3-b^3\right)\)
\(\Leftrightarrow3\left(a-b\right)\left(a+b\right)< 2\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow\left(a^2+ab+b^2\right)>\frac{3}{2}\left(a+b\right)\) (chia cả hai vế cho \(a-b>0\))
\(\Leftrightarrow\left(a^2-\frac{3}{2}a+\frac{9}{16}\right)+\left(b^2-\frac{3}{2}b+\frac{9}{16}\right)+\frac{7}{8}>0\)(vì ab = 1)
\(\Leftrightarrow\left(a-\frac{3}{4}\right)^2+\left(b-\frac{3}{4}\right)^2+\frac{7}{8}>0\) (luôn đúng)
Vậy có đpcm.
a) \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
\(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x^3}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
\(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\dfrac{2}{x-\sqrt{x}+1}\)
\(A=\dfrac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\dfrac{2\left(\sqrt{x}+1\right)}{\left(x-\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x-\sqrt{x}+1-3+2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
b) Chứng minh \(A\ge0\)
Ta có \(A=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x^2}-2\sqrt{x}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1}=\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Mà \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\) và \(\sqrt{x}\ge0\)
\(\Rightarrow A=\dfrac{\sqrt{x}}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge0\) (1)
Chứng minh \(A\le1\)
Ta có \(A=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\le1\)
\(\Leftrightarrow\sqrt{x}\le x-\sqrt{x}+1\)
\(\Leftrightarrow2\sqrt{x}\le x+1\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow x+1\ge2\sqrt{x}\) ( luôn đúng với mọi \(x\ge0\) )
Vậy \(A\le1\) (2)
Từ (1) và (2)
\(\Rightarrow0\le A\le1\) ( đpcm )