Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)
\(A< \frac{1}{4}-\frac{1}{100}\)
\(A< \frac{6}{25}< \frac{1}{4}\)
Bài 3
\(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}\)
\(=1+\frac{5}{n+1}\)
Vậy để \(\frac{n+6}{n+1}\in Z\Rightarrow1+\frac{5}{n+1}\in Z\)
Hay \(\frac{5}{n+1}\in Z\)\(\Rightarrow n+1\inƯ_5\)
\(Ư_5=\left\{1;-1;5;-5\right\}\)
* \(n+1=1\Rightarrow n=0\)
* \(n+1=-1\Rightarrow n=-2\)
* \(n+1=5\Rightarrow n=4\)
* \(n+1=-5\Rightarrow n=-6\)
Vậy \(n\in\left\{0;-2;4;-6\right\}\)
Bài 2:
\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\\ =2\left(\frac{1}{3}-\frac{1}{28}\right)\\ =2.\frac{56}{84}\\ =\frac{56}{42}=\frac{28}{21}\)
Tử số \(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\)
\(=\left(1+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{99}\right)+...+\left(\frac{1}{50}+\frac{1}{51}\right)\)
\(=\frac{101}{1.100}+\frac{101}{2.99}+...+\frac{101}{50.51}\)
\(=101.\left(\frac{1}{1.100}+\frac{1}{2.99}+...+\frac{1}{50.51}\right)\)
Mẫu số \(=\frac{1}{1.100}+\frac{1}{2.99}+...+\frac{1}{99.2}+\frac{1}{100.1}\)
\(=2.\left(\frac{1}{1.100}+\frac{1}{2.99}+...+\frac{1}{50.51}\right)\)
=> phân số đề bài cho \(=\frac{101}{2}\)
Mk làm bai 1 thôi:
\(A=1+2+2^2+2^3+...+2^{2015}+2^{2016}\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\right)-\left(1+2+2^2+2^3+2^4+...+2^{2015}+2^{2016}\right)\)
\(A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}-1-2-2^2-2^3-2^4-...-2^{2016}-2^{2017}\)
\(A=2^{2017}-1\)
Câu này mình mới làm ở nhà thầy Phong -_-
1) Ta có: 3/-4 = -3/4
Vì -3/4 > -4/4 > -4/5
=> -3/4 > -4/5
2) 19/18 - 1 = 1/18
2017/2016 - 1 = 1/2016
Vì 1/2016 < 1/18
=> 2017 / 2016 < 19/18
3)72/73 + (72 + 26) / (73 + 26) = 98/99
Từ đó => 72/73 < 98/99
4) 18/31 > 15/31 > 15/37
=> 18/31 > 15/37
5) 72/73 > 58/73 > 58/99
=> 72/73 > 58/99
6) 2015/2016 + 2016/2017 = 2015/2016 + 2016 + 2017 =="
tk mừn đi
1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017
= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)
= 1 + 0 + 0 + 0 + .........+ 0
= 1
Giả sử a là số nguyên tố chia 12 dư 9
=> a = 12k + 9 ( k \(\in\)N* )
= 3(4k + 3 ) chia hết cho 3
=> a chia hết cho 3. Mà a là số nguyên tố
=> a = 3
Mà 3 chia 12 dư 3
=> Điều giả sử trên là sai !
Vậy không có số nguyên tố nào chia 12 dư 9