K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 3 2019

\(f\left(x\right)+f\left(1-x\right)=\frac{100^x}{100^x+100}+\frac{100^{1-x}}{100^{1-x}+100}\)

Nhân cả tử và mẫu của \(\frac{100^{1-x}}{100^{1-x}+100}\) với \(100^x\) ta được:

\(f\left(x\right)+f\left(1-x\right)=\frac{100^x}{100^x+100}+\frac{100}{100+100^x}=\frac{100^x+100}{100^x+100}=1\)

Vậy: \(S=f\left(\frac{1}{2009}\right)+f\left(\frac{2008}{2009}\right)+f\left(\frac{2}{2009}\right)+f\left(\frac{2007}{2009}\right)+...+f\left(\frac{1004}{2009}\right)+f\left(\frac{1005}{2009}\right)\)

\(S=1+1+1+...+1\) (có \(\frac{2008-1+1}{2}=1004\) số 1)

\(S=1004\)

2 tháng 10 2015

f(x) là đa thức bậc hai nên đặt f(x) = ax+ bx + c

=> f(x - 1) = a(x - 1)+ b(x - 1) + c 

=> f(x) - f(x - 1) = a.[x- (x - 1)2] + b[x - (x - 1)] = a.(2x - 1) + b = 2ax + (b - a) 

Để f(x) - f(x - 1) = x thì 2ax + (b - a) = x <=> 2a = 1 và b - a = 0 => a = b = 1/2. Chọn c tùy ý

Chọn c = 0 , Vậy đa thức f(x) = \(\frac{x^2+x}{2}=\frac{x\left(x+1\right)}{2}\)

Áp dụng tính S: Đặt f(n) = \(\frac{n\left(n+1\right)}{2}\) ta có: 

1 = f(1) - f(0); 2= f(2) - f(1); ...; n = f(n) - f(n - 1)

=> S = 1 + 2 + ...+ n = f(1) - f(0) + f(2) - f(1) + ...+ f(n) - f(n - 1) = [f(1) + f(2) + ....+ f(n)] - [f(0) + f(1) + ...+ f(n-1)]

S = f(n) - f(0) = \(\frac{n\left(n+1\right)}{2}\)

Vậy.............

 

1 tháng 10 2015

xét f(x)=ax^2 cộg bx cộg c 
f(x)-f(x-1)=x 
<=>2ax-(a-b)=x 
vì phân tích trên là duy nhất suy ra a=b=1/2 
nên f(x)=(x^2 cộng x)/2 cộg c (c là hằg số) 
cho x=0,1,2,...n rồi cộng lại ta đc: 
f(n)-f(0)=1 cộng 2 cộng...cộg n 
<=>(x^2 cộg x)/2=1 cộg 2 cộg...cộng n. 

lưu ý:từ bài này ta có thể suy ra cách tính tổng của một số dãy số. 

AH
Akai Haruma
Giáo viên
13 tháng 6 2018

Lời giải:

a)

\(f(x)=ax^2+bx\Rightarrow \left\{\begin{matrix} f(x)=ax^2+bx\\ f(x-1)=a(x-1)^2+b(x-1)\end{matrix}\right.\)

Do đó:

\(f(x)-f(x-1)=x\)

\(\Leftrightarrow ax^2+bx-a(x-1)^2-b(x-1)=x\)

\(\Leftrightarrow a[x^2-(x-1)^2]+b=x\)

\(\Leftrightarrow a(2x-1)+b=x\)

\(\Leftrightarrow x(2a-1)+(b-a)=0\)

Vì đẳng thức luôn đúng với mọi $x$ nên \(\left\{\begin{matrix} 2a-1=0\\ b-a=0\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

b) \(f(x)=\frac{1}{2}x^2+\frac{1}{2}x\)

Theo phần a:

\(1=f(1)-f(0)\)

\(2=f(2)-f(1)\)

\(3=f(3)-f(2)\)

.....

\(n=f(n)-f(n-1)\)

Cộng theo vế:

\(\Rightarrow S=1+2+...+n=f(n)-f(0)=\frac{1}{2}n^2+\frac{1}{2}n-\frac{1}{2}.0^2-\frac{1}{2}.0=\frac{n(n+1)}{2}\)