K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 6 2024

Lời giải:

$A=3+3^2+3^3+...+3^9$

$=(3+3^2+3^3)+(3^4+3^5+3^6)+(3^7+3^8+3^9)$

$=3(1+3+3^2)+3^4(1+3+3^2)+3^7(1+3+3^2)$

$=(1+3+3^2)(3+3^4+3^7)$

$=13(3+3^4+3^7)\vdots 13$

Ta có đpcm.

* C=(1+3+32)+(33+34+35)+...+(39+310+311)

     = 13+33.(1+3+32)+...+39.(1+3+32)

     = 13+33.13+...+39.13   chia hết cho 13

* Tương tự nhóm 4 số hạng một với nhau.

Chúc bạn học tốt!

3 tháng 7 2016

1. C chia hết cho 13

C=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^9+3^10+3^11)

  =  13 + 3^3.(1+3+3^2)+...+3^9.(1+3+3^2)

  =  13 + 3^3.13+...+3^9.13

  = 13.(3^3+...+3^9) chia hết cho 13

 (vì 13 chia hết cho 13)

2. C chia hết cho 40

C = 1 + 3 + 32 + 33 + ......+311 

C=30+31+32+...311

C = (30 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + (38 + 39 + 310+ 311)

C = 30(1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + 38(1 + 3 + 32 + 33)

C = 30.40 + 34. 80 + 38. 40

C= 40(30 + 34 + 38) ( chia hết cho 40 vì tích có thừa số 40 

15 tháng 9 2015

1. C = 1 + 3 + 3^2 + 3^3 + .... + 3 ^11 
  ( 1+ 3 + 3^2 ) +..... + ( 3^9 +3^10+3^11 )
 13 . 1 +..... + 3^9 . 13 
13 ( 1 +......+ 3^9 ) chia hết cho 13 
Câu b tương tự nhé 

24 tháng 7 2019

\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)

\(=\left(1+3+3^2\right)\left(3+3^4+3^7\right)=13\left(3+3^4+3^7\right)⋮13\) (đpcm)

24 tháng 7 2019

Lời giải:

Ta có:

\(A=(3+3^2+3^3)+(3^4+3^5+3^6)+(3^7+3^8+3^9)\)

\(=(3.1+3.3+3.9)+(3^4.1+3^4.3+3^4.9)+(3^7.1+3^7.3+3^7.9)\)

\(=3.(1+3+9)+3^4\left(1+3+9\right)+3^7.\left(1+3+9\right)\)

\(=3.13+3^4.13+3^7.13\)

\(=13.(3+3^4+3^7)\) ⋮ 13 . Vậy: A ⋮ 13

hahaChúc bạn học tốt!hihaTick cho mình nhé!eoeo

26 tháng 11 2015

1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)

\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)

Vậy chia hết cho 30

\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)

\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)

Vậy chia hết cho 31

 

4 tháng 1 2017

haizzzzzzzzzzz câu 2 làm tek nào z

31 tháng 12 2017

Có : A = (3+3^3+3^3)+(3^4+3^5+3^6)+.....+(3^98+3^99+3^100)

= 3.(1+3+3^2)+3^4.(1+3+3^2)+.....+3^98.(1+3+3^2)

= 3.13+3^4.13+.....+3^98.13

= 13.(3+3^4+....+3^98) chia hết cho 13

=> ĐPCM

k mk nha

31 tháng 12 2017

3+32+33+34+..........+3100

=(3+32+33)+(34+35+36)+.......+(398+399+3100)

=39x1+33x(3+32+33)+.......+397x(3+32+33)

=39x1+33x39+.......+397x39

=39x(1+33+......+397\(⋮13\)

Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2

Ta có tổng 3 số tự nhiên liên tiếp là:

a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3

3 tháng 10 2017

1. S = 1 + 2 + 2^2 +.........+ 2^59

  2S = 2 + 2^2 + ...........+ 2^59 + 2 ^60

2S - S = (2 + 2^2 +.........+ 2^60) - (1 +2 + 2^2 +..........+ 2^59)

 S = 2^60 - 1

mà 2^60 -1 = 2^60 - 1 => S = 2^60 -1

2.

Ta có : S = 1 + 2 +..............+ 2^59

S = 1(1 +2) + 2^2(1 +2 ) +........+ 2^58(1 +2)

S = 1.3 + 2^2.3 +...............+ 2^58.3

S = 3.(1 + 2^2 +.............+2^58) nên S chia hết cho 3

Cứ như vậy bạn nhóm các số hạng của S để tạo thành tổng có kết quả là 7 và 15 rồi tự chứng minh nhé

15 tháng 12 2017

bạn giải được chưa thì giúp mình với

10 tháng 6 2018

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm