K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2021

đề gõ sai kìa

2A = 2^1 + 2^2 + 2^3 + ..+ 2^20

2A - A = A = 2^20 - 2^0

=> A = 2^20 - 1 ; B = 2^20

=> A;B là 2 stn liên tiếp

26 tháng 2 2021

Trả lời:

A = 20 + 21 + 22 + 23 + ... + 219

=> 2A = 21 + 22 + 23 + 24 + ... + 220

=> 2A - A =  ( 21 + 22 + 23 + 24 + ... + 220 ) - ( 20 + 21 + 22 + 23 + ... + 219 )

=> A = 21 + 22 + 23 + 24 + ... + 220 - 20 - 21 - 22 - 23 - ... - 219 

=> A = 220 - 1

Mà B = 220

nên A và B là 2 số tự nhiên liên tiếp

23 tháng 8 2016

\(2A=2^1+2^2+2^3+2^4+...+2^{2010}.\)

\(A=2A-A=2^{2010}-2^0=2^{2010}-1\)

=> A và B là 2 số tự nhiên liên tiếp

23 tháng 8 2016

Ta có: A=1+2+22+...+22009

=>2A=2+22+23+....+22010

=>2A-A=A=(2+22+23+...+22010)-(1+2+22+...+22009)

=>A=22010-1

=>A và B là 2 số tự nhiên liên tiếp (đpcm)

11 tháng 12 2019

Cho A=   Và B = 22020

Chứng minh rằng A và B là 2 số tự nhiên liên tiếp 

\Giups mình nhé

Ta có : 

A= 20+21+22+23+......+ 22018+22019 

2A=2(20+21+22+23+......+ 22018+22019) = 21+22+23+......+ 22018+22019 + 22020

2A-A= (21+ 22+23+......+ 22018+22019 + 22020) - ( 20+21+...+22019)

   A= 22020-20 = 22020 -1               

vì A= 22020 - 1 , B=22020 suy ra A và B là 2 số tự nhiên liên tiếp .

vậy A và B là 2 số tự nhiên liên tiếp.

Ta có : \(A=1+2+2^2+...+2^{19}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{20}\)

\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{20}\right)-\left(1+2+2^2+...+2^{19}\right)\)

hay \(A=2^{20}-1\)

\(\Rightarrow A\)và \(B\)là hai số tự nhiên liên tiếp .

21 tháng 1 2018

Có : S = (1+2)+(2^2+2^3)+.....+(2^98+2^99)

= 3+2^2.(1+2)+......+2^98.(1+2)

= 3+2^2.3+.....+2^98.3

= 3.(1+2^2+......+2^98) chia hết cho 3

=> S chia hết cho 3

Có : 2S = 2+2^2+....+2^100

S = 2S - S = (2+2^2+....+2^100)-(1+2+2^2+....+2^99) = 2^100 - 1

=> S+1 = 2^100-1+1 = 2^100 = (2^2)^50 = 4^50 = 4^48+2

=> ĐPCM

Tk mk nha

21 tháng 1 2018

Cảm Ơn Bạn Nhiều!

30 tháng 10 2017

1.A=5+52+....+5100

<=> 5A=52+53+.....+5101

<=> 5A-A=(52+53+....+5101)-(5+52+....+5100)

<=> 4A=5101-5

<=> \(A=\frac{5^{101}-5}{4}\)

2. Ta có : 4A=5101-5

<=> 4A+5=5101

Vậy x=101.

3. \(A=5+5^2+....+5^{100}\)

\(\Rightarrow A=\left(5+5^2+5^3+5^4\right)+...+\left(5^{97}+5^{98}+5^{99}+5^{100}\right)\)

\(\Rightarrow A=5.\left(1+5+25+125\right)+...+5^{97}.\left(1+5+25+125\right)\)

\(\Rightarrow A=5.165+....+5^{97}.165\)

\(\Rightarrow A=165.\left(5+...+5^{97}\right)\)

\(\Rightarrowđpcm\)

30 tháng 10 2017

Mình xin lỗi viết nhầm 

\(A=156.\left(5+....+5^{97}\right)\)

\(\Rightarrow A⋮156\)