K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

bo tay

a) Ta có: CF = AF = AC / 2 (F là trung điểm của AC)
              BE = AE = AB / 2 (E là trung điểm AB)
Mà AC = AB (tam giác ABC cân tại A)
=> AF = AE = CF = BE 
=> tam giác AFE cân tại A (1)

Ta có: F, E lần lượt là trung điểm của AC, AB (gt)
=> FE là đường trung bình của tam giác ABC
=> FE // BC
Mà AI vuông góc với CB (AI là đường cao)
=> AI vuông góc với FE (2)

Từ (1), (2) => AI cũng là đường trung trực của FE (giải thích thêm: tính chất các đường thẳng từ đỉnh của tam giác cân)
=> E đối xứng với F qua AI (đpcm)

b) Xét tứ giác FEBC, có:
* EF // BC (cmt)
=> FEBC là hình thang 
Mà FC = EB (cmt)
=> FEBC là hình thang cân

Xét tam giác FOC và tam giác EOB, có:
* FC = EB (cmt)
* góc CFO = góc BEO (FEBC là hình thang cân)
* FO = EO (E đối xứng với F qua O; O thuộc AI)
=> tam giác FOC = tam giác EOB (c.g.c)
=> góc FOC = góc EOB (yếu tố tương ứng)
Mà góc HOF, góc KOE lần lượt đối đỉnh với góc EOB và góc FOC
=> góc HOF = góc KOE

Xét tam giác HOF và tam giác KOE, có:
* góc HFO = góc KEO ( tam giác AFE cân tại A)
* FO = EO (E đối xứng với F qua AO)
* góc HOF = góc KOE (cmt)
=> tam giác HOF = tam giác KOE (g.c.g)
=> HF = KE (yếu tố tương ứng) (đpcm)

c) Xét tam giác HOK, có:
* OH = OK ( tam giác HFO = tam giác KEO)
=> tam giác HOK cân tại O
=> góc OHK = góc OKH (t/c)

Ta có: góc AOH + góc HOF = 90 độ (AI vuông góc FE)
          góc AOK + góc KOE = 90 độ (AI vuông góc FE)
Mà góc HOF = góc KOE (cmt)
=> góc AOH = góc AOK 
=> OA là phân giác của góc HOK
=> OA cũng là đường trung trực của tam giác cân OKH
=> OA vuông góc HK ( t/c)
Mà OA vuông góc FE ( AI vuông góc FE ; O thuộc AI)
=> HK // FE
Mà FE // CB (cmt)
=> HK // CB 
=> HKBC là hình thang 
Mà góc HCB = góc KBC ( tam giác ABC cân tại A; H thuộc AC; K thuộc AB)
=> HKBC là hình thang cân (đpcm)

14 tháng 7 2022

Vì tg ABC cân tại A(gt), đường cao AH 

=> AH đồng thời là đi trung trực của tgABC

=> BH=HC

Xét ΔEBH và ΔFCH có 

EB=FC(gt)

ˆB=ˆC( vì tg ABC cân tại A)

BH=CH(cmt)

Do đó: ΔEBH=ΔFCH

Suy ra: HE=HF

hay H nằm trên đường trung trực của EF(1)

Ta có: AE=AF

Điểm A nằm trên đường trung trực của EF(2)

Từ (1) và (2): => E và F đối xứng nhau qua AH

8 tháng 8 2021

a)Xét tam giác ABC có \(\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\Rightarrow EF\perp AH\)

Chứng minh được tam giác BEH = tam giác CFH (g.c.g)

\(\Rightarrow EH=HF\)

Nên E đx với F qua H

b) Ta có \(AH\cap BK\cap CI=O\)

Mà \(O\in AH\) và \(AH\) là đường cao

\(\Rightarrow\)BK và CI là đường cao 

Chứng minh được \(\Delta AKB=\Delta AIC\left(ch-gn\right)\)

\(\Rightarrow BK=CI;\widehat{ABK}=\widehat{ACI}\)

Mà BE=CF

\(\Rightarrow\Delta BEK=\Delta CFI\left(c.g.c\right)\)

\(\Rightarrow EK=FI\)

8 tháng 8 2021

Đặt đề hơi ảo vì có 2 góc H nên mình sẽ để CO cắt AB tại I

a: Xét ΔEBH và ΔFCH có 

EB=FC

\(\widehat{B}=\widehat{C}\)

BH=CH

Do đó: ΔEBH=ΔFCH

Suy ra: HE=HF

hay H nằm trên đường trung trực của EF(1)

Ta có: AE=AF

nên A nằm trên đường trung trực của EF(2)

Từ (1) và (2) suy ra E và F đối xứng nhau qua AH