K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Ta có: Diện tích hình chữ nhật MNPQ bằng diện tích hình chữ nhật (I) + diện tích hình chữ nhật (II)

\( = ac + bc = (a + b).c\).

Mà MN = c 

Do đó NP = \((a + b).c:c = a + b\).

b) Ta có:

\(\begin{array}{l}(A + B):c = (ac + bc):c = a + b\\A:c + B:c = ac:c + bc:c = a + b\end{array}\)

Vậy  \((A + B):c\) =\(A:c + B:c\).

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a)

Diện tích của hình chữ nhật (I) là: \(a.c\).

Diện tích của hình chữ nhật (II) là: \(a.d\).

Diện tích của hình chữ nhật (III) là: \(b.c\).

Diện tích của hình chữ nhật (IV) là: \(b.d\).

b) Diện tích hình chữ nhật MNPQ là: \(ac + ad + bc + bd\).

c) Ta có:

\((a + b)(c + d) = a(c + d) + b(c + d) = ac + ad + bc + bd\).

Vậy \((a + b)(c + d)\) = \(ac + ad + bc + bd\).

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a)

Diện tích của hình chữ nhật (I) là: \(a.b\).

Diện tích của hình chữ nhật (II) là: \(a.c\).

b) Diện tích của hình chữ nhật MNPQ là: \(ab + ac\).

c) Ta có: \(a(b + c) = a.b + a.c\).

Vậy \(a(b + c)\) = \(ab + ac\).

a) Xét ΔABC có 

E là trung điểm của AB(gt)

F là trung điểm của AC(gt)

Do đó: EF là đường trung bình của ΔABC(ĐỊnh nghĩa đường trung bình của tam giác)

Suy ra: EF//BC

hay BEFC là hình thang có hai đáy là EF và BC và FE\(\perp\)AH(đpcm)

28 tháng 7 2023

a) Thể tích của hình hộp chữ nhật:

\(9\cdot5=45\left(dm^3\right)\)

b) Cạnh đáy của hình hợp chữ nhật:

Ta có: \(9=3\cdot3\)

Nên cạnh đáy bằng 3 cm

Diện tích toàn phần của hình hộp chữ nhật:

\(2\cdot5\cdot\left(3+3\right)=60\left(dm^2\right)\)

29 tháng 4 2019

Tự vẽ hình nha!

Xét tam giác BMK và tam giác CNK có:

BM=CN (gt)

Góc BKM=góc CKN (hai góc đối đỉnh)

MK=NK (K là trung điểm MN)

=> tam giác BMK=tam giác CNK (c.g.c)

=> BK=CK

=> K là trung điểm BC

=> B,K,C thẳng hàng.

29 tháng 4 2019

a, xét tam giác CMA và tam giác BMD có : AM = MD (gt)

BM = CM do AM là trung tuyến (gt)

góc CMA = góc BMD (đối đỉnh)

=> tam giác CMA = tam giác BMD (c - g - c)

=> BD = AC (đn)

Bài 2: 

a: Xét ΔBAD và ΔBHD có

BA=BH

\(\widehat{ABD}=\widehat{HBD}\)

BD chung

Do đó: ΔBAD=ΔBHD

b: Ta có: ΔBAD=ΔBHD

nên \(\widehat{BAD}=\widehat{BHD}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BHD}=90^0\)

hay DH\(\perp\)BC