Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1: c/m A chia hết cho 10
B2: c/m A chia hết cho 13
Kết hợp với (10;13)=1=> A chia hết cho 130
tam giác abc vuông tại a ==>bc là cạnh huyền
vì M là tđ của bc==>am là trung tuyến==>ma=mb=mc(trung tuyến bằng 1/2 cạnh huyền)==ĐPCM
câu a )
ta kiếm dc 2 kết quả 0 hoặc 2003
câu B)
KQ là 1
ai tick mik mik tick lại cko
#)Giải :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\left(#\right)\)
Thay vào VP, ta được :
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)
Lại có :
\(\frac{a^2+b^2}{c^2+d^2}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow a^2d^2=b^2c^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)
Tiếp tục thay (#) vào, ta được :
\(\left(\frac{bk+b}{dk+d}\right)^2=\left(\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}\right)^2=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\Rightarrow\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)\(=\frac{a^2+b^2}{c^2+d^2}\)\(\left(1\right)\)
Có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{a}{c}\)\(\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)\(\RightarrowĐPCM\)
a)A=3+32+33+...+32004
=>3A=32+33+34+...+32005
=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)
=>2A=32+33+34+...+32005-3-32-33-...-32004
=>2A=32005-3
=>A=0,10025
a)A=3+32+33+...+32004
=>3A=32+33+34+...+32005
=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)
=>2A=32+33+34+...+32005-3-32-33-...-32004
=>2A=32005-3
=>A=\(\frac{3^{2005}-3}{2}\)
\(\text{Vẽ đường thẳng c đi qua điểm O}\)
\(\text{Ta có }:\widehat{O}1=\widehat{O}2=90^0:2=45^0\)
\(\widehat{A}1=180^0-140^0=40^0\)
\(\Rightarrow\widehat{O}1=\widehat{A}1=40^0\left(slt\right)\)
\(\Rightarrow\)\(a\)\(\text{//}c\left(1\right)\)
\(\widehat{B}1=180-130=50^0\)
\(\Rightarrow\widehat{O}2=\widehat{B}1=50^0\)
\(\Rightarrow c\)\(\text{//}b\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow a\text{//}b\)
ths nhìu nha