K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

a,\(x^2+y^2=\left(x+y\right)^2-2xy\)

\(VP=\left(x+y\right)^2-2xy\)

\(=x^2+2xy+y^2-2xy\)

\(=x^2+y^2=VP\left(đpcm\right)\)

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2

a: \(=n^3+2n^2+3n^2+6n-n-2-n^3+5\)

\(=5n^2+5n+3⋮̸5\)

b:\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

d: \(=4x^2y^2-2x^2y+2xy^2-xy-4x^2y^2+xy\)

\(=-2\left(x^2y-xy^2\right)⋮2\)

23 tháng 6 2018

1.

\(x+y=1\Rightarrow x=1-y\)

\(\Rightarrow x^2+y^2=\left(1-y\right)^2+y^2=2y^2-2y+1=2\left(y^2-y+\dfrac{1}{2}\right)=2\left(y^2-2y\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Vậy \(A_{Min}=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)

2.

Ta có:

\(B=\dfrac{1}{x^2y^2}-\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{x^2y^2}-\dfrac{y^2}{x^2y^2}-\dfrac{x^2}{x^2y^2}=\dfrac{1-\left(x^2+y^2\right)}{x^2y^2}\le\dfrac{1-\dfrac{1}{2}}{\dfrac{1}{4}\cdot\dfrac{1}{4}}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{8}}=\dfrac{1}{4}\)

Vậy \(B_{Max}=\dfrac{1}{4}\Leftrightarrow x=y=\dfrac{1}{2}\)

Tui chỉ làm bừa thui nha. K chắc lắm. Thử lại đi haha

27 tháng 11 2022

a: \(=\dfrac{4x^2+4x+1-4x^2+4x-1}{\left(2x+1\right)\left(2x-1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{8x\cdot5}{4x\left(2x+1\right)}=\dfrac{10}{2x+1}\)

b: \(=\left(\dfrac{1}{x^2+1}+\dfrac{x-2}{x+1}\right):\dfrac{1+x^2-2x}{x}\)

\(=\dfrac{x+1+x^3+x-2x^2-2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x^3-2x^2+2x-1}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x}{\left(x-1\right)^2}\)

\(=\dfrac{x\left(x^2-x+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

c: \(=\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}\)

\(=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)

14 tháng 7 2017

Giải:

a) \(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)

\(\Leftrightarrow M=\left[x^3-3xy\left(x-y\right)-y^3\right]-\left(x^2-2xy+y^2\right)\)

\(\Leftrightarrow M=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay \(x-y\) vào, được:

\(M=7^3-7^2=294\)

Vậy ...

b) \(N=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(\Leftrightarrow N=x^3+x^2-y^3+y^2+xy-3xy-3xy\left(x-y\right)-95\)

\(\Leftrightarrow N=x^3+x^2-y^3+y^2-2xy-3xy\left(x-y\right)-95\)

\(\Leftrightarrow N=\left[x^3-y^3-3xy\left(x-y\right)\right]+\left(x^2-2xy+y^2\right)-95\)

\(\Leftrightarrow N=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay \(x-y\) vào, được:

\(N=7^3+7^2-95=297\)

Vậy ...

Chúc bạn học tốt!