Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
\(\widehat{AOM}=\widehat{BOM}\)
Do đó: ΔOMA=ΔOMB
b: ΔOMA=ΔOMB
=>MA=MB và OA=OB
OA=OB
=>O nằm trên đường trung trực của AB(1)
MA=MB
=>M nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB
Gọi số bài toán Hoa làm là: x ( x E N*)
Khi đó ngày đầu Hoa đọc : 1/3.x=1x/3
Số trang còn phải đọc là: 1 - 1x/3 = 2x/3
Ngày 2 hoa đọc : 2x/3 x 3/7 = 2x/7
Số trang thứ 3 là; 5
Theo bài ra ta có:
1x/3 + 2x/7 + 5 = x
7x + 6x + 105 = 21x
13x + 105 = 21x
13x - 21x = -105
-8x = -105
x = -105 : (-8)
x =
\(\frac{14^{16}\cdot21^{31}\cdot35^{48}}{10^{16}\cdot15^{32}\cdot7^{96}}\)
\(=\frac{\left(2\cdot7\right)^{16}\cdot\left(3\cdot7\right)^{31}\cdot\left(5\cdot7\right)^{48}}{\left(2\cdot5\right)^{16}\cdot\left(3\cdot5\right)^{32}\cdot\left(7^2\right)^{48}}\)
\(=\frac{2^{16}\times3^{31}\times5^{48}\times7^{95}}{2^{16}\times3^{32}\times5^{48}\times7^{96}}\)
\(=\frac{1\times1}{3\times7}\)
\(=\frac{1}{21}\)
\(P=3x^2-xy-10xy+15y^2+11xy=3x^2+15y^2\)
Nhan xet: \(3x^2\ge0;15y^2\ge0\)
=> \(3x^2+15y^2\ge0\) => \(P\ge0\)
GTNN cua P la 0 khi x=y=0
$P=3x^2-xy-10xy+15y^2+11xy=3x^2+15y^2$
Nhan xet: $3x^2\ge0;15y^2\ge0$
=> $3x^2+15y^2\ge0$ => $P\ge0$GTNN cua P la 0 khi x=y=0
x - y = xy
\(\Rightarrow\)x = xy + y = y . ( x + 1 )
\(\Rightarrow\)x : y = x + 1 ( y \(\ne\)0 )
Theo bài ra : x : y = x - y
\(\Rightarrow\)x + 1 = x - y
\(\Rightarrow\)y = -1
Thay y = -1 vào x - y = xy , ta được :
x - ( -1 ) = x . ( -1 )
x + 1 = -x
2x = -1
x = \(\frac{-1}{2}\)
Vậy ...
Ta có:
x - y = xy = x/y
Xét xy = x : y
=> y.y = x : x
=> y^2 = 1
=> y = 1
=> x - 1 = x (vô lí)
Ba tỉ lệ thức viết được từ tỉ lệ thức \(\frac{8}{3}=\frac{12}{4,5}\)là :
\(\frac{8}{12}=\frac{3}{4,5}\)
\(\frac{12}{8}=\frac{4,5}{3}\)
\(\frac{3}{8}=\frac{4,5}{12}\)