K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

\(\left(x^2-2x+3\right)\left(\frac{1}{2x}-5\right)\)

\(=\frac{x^2}{2x}-5x^2-\frac{2x}{2x}+10x+\frac{3}{2x}-15\)

\(=\frac{x^2}{2x}-5x^2-16+10x+\frac{3}{2x}\)

\(=-5x^2+\frac{x^2}{2x}+\frac{20x^2}{2x}+\frac{3}{2x}-16\)

\(=-5x^2+\frac{x^2+20x+3}{2x}-16\)

học tốt

13 tháng 9 2021

(x^2-2x+3)(1/2x-5)=1/2x^3-5x^2-x^2+10x+3/2x-15=1/2x^3-6x^2+11,5x-15

NV
17 tháng 2 2022

Chắc là \(P=\dfrac{1}{1+2x}+\dfrac{1}{1+2y}+\dfrac{1}{1+2z}\)

Do \(xyz=1\), đặt \(\left(x;y;z\right)=\left(\dfrac{b}{a};\dfrac{c}{b};\dfrac{a}{c}\right)\)

\(\Rightarrow P=\dfrac{1}{1+\dfrac{2b}{a}}+\dfrac{1}{1+\dfrac{2c}{b}}+\dfrac{1}{1+\dfrac{2a}{c}}=\dfrac{a}{a+2b}+\dfrac{b}{b+2c}+\dfrac{c}{c+2a}\)

\(P=\dfrac{a^2}{a^2+2ab}+\dfrac{b^2}{b^2+2bc}+\dfrac{c^2}{c^2+2ac}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}=1\)

\(P_{min}=1\) khi \(a=b=c\) hay \(x=y=z=1\)

NV
17 tháng 2 2022

Ủa sao giả thiết là a;b;c mà biểu thức lại là x;y;z vậy em?

12 tháng 9 2017

\(\forall n\in N;n\ne0\) Ta có : \(\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n-1}{n\left(n+1\right)}=\frac{0}{\left(n+1\right)n}=0\)

\(\Rightarrow\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+2\left[\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n\left(n+1\right)}\right]}\)

\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng ta được :

\(A=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+.....+1+\frac{1}{1100}-\frac{1}{1101}\)

\(=1099+\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1100}\right)-\left(\frac{1}{3}+\frac{1}{4}+....+\frac{1}{1101}\right)\)

\(=1099+\frac{1}{2}-\frac{1}{1101}=\frac{2421097}{2202}\)

NV
17 tháng 2 2022

\(P=\dfrac{a^2\left(b+c\right)+b^2\left(a+c\right)}{abc}=\dfrac{c\left(a^2+b^2\right)+ab\left(a+b\right)}{abc}\)

\(P=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{c}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{\sqrt{a^2+b^2}}\ge\dfrac{a^2+b^2}{ab}+2\sqrt{\dfrac{ab}{a^2+b^2}}\)

Đặt \(\sqrt{\dfrac{a^2+b^2}{ab}}=x\ge\sqrt{2}\)

\(P=x^2+\dfrac{2}{x}=\left(1-\dfrac{1}{2\sqrt{2}}\right)x^2+\dfrac{x^2}{2\sqrt{2}}+\dfrac{1}{x}+\dfrac{1}{x}\)

\(P\ge\left(1-\dfrac{1}{2\sqrt{2}}\right).2+3\sqrt[3]{\dfrac{x^2}{2\sqrt{2}x^2}}=2+\sqrt{2}\)

\(P_{min}=2+\sqrt{2}\) khi \(x=\sqrt{2}\Rightarrow a=b\) hay tam giác vuông cân

11 tháng 6 2021

`A=(x^2-2)(x^2+x-1)-x(x^3+x^2-3x-2)`

`=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x`

`=(x^4-x^4)+(x^3-x^3)+(3x^2-x^2-2x^2)+(2x-2x)+2`

`=2`

11 tháng 6 2021

sai dấu bước 2 rồi kìa bạn ơi

8 tháng 6 2016

Sorry . I am class 7a

xin lỗi, em lớp 6 vừa mới lên lớp 7 thui
13 tháng 2 2022

-Để mình suy nghĩ ngồi làm cho bạn nhé.

13 tháng 2 2022

-Vì bài dài quá nên mình nói tóm tắt:

a) -Bạn chứng minh △ABM = △BCN (g-c-g) do có \(AB=BC\) , \(\widehat{BCN}=\widehat{ABM}=90^0\),\(\widehat{NBC}=\widehat{MAB}\) (bạn tự chứng minh).

-Suy ra: \(BM=CN\) .

-Suy ra 2 điều:

+\(QM^2-BQ^2=MN^2-MC^2\)

+\(QM+BQ=MN+MC\) (1)

\(QM^2-BQ^2=MN^2-MC^2\)

\(\Rightarrow\left(QM-BQ\right)\left(QM+BQ\right)=\left(MN-MC\right)\left(MN+MC\right)\)

\(\Rightarrow QM-BQ=MN-MC\) (2)

-Từ (1),(2) suy ra \(QM=MN\) nên △BMQ=△CNM (ch-cgv).

\(\Rightarrow\) MQ vuông góc với MN (bạn tự c/m).

\(QM=MN\) nên \(BQ=MC\) nên \(AQ=BM\Rightarrow PQ^2-AP^2=QM^2-BQ^2;QM+BQ=PQ+AP\)

Nên \(PQ=QM;\Delta APQ=\Delta BQM\) nên PQ⊥QM ; AP=BQ nên PQ=AQ

-Từ PQ=AQ bạn tự c/m PN=PQ (theo sườn mình đã cho) rồi sau đó c/m tam giác APQ=tam giác DNP rồi từ đó suy ra PQ vuông góc PN

.......