K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: |2x-1|<5

=>2x-1>-5 và 2x-1<5

=>2x>-4 và 2x<6

=>-2<x<3

mà x là số nguyên dương

nên \(x\in\left\{1;2\right\}\)

15 tháng 10 2017

xinh nhỉ banh

14 tháng 12 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)

Từ đó:

\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)

\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)

Vậy \(x=2006;y=-2003.\)

6 tháng 2 2017

Yêu cầu của bài là j vậy?

9 tháng 4 2017

Gọi độ dài các cạnh lần lượt là x, y, z

Trong một tam giác, độ dài đường cao tỉ lệ nghịch với độ dài cạnh nên ta có:

\(x\div y\div z=\dfrac{1}{12}\div\dfrac{1}{15}\div\dfrac{1}{20}\)

\(\Rightarrow\dfrac{x}{\dfrac{1}{12}}=\dfrac{y}{\dfrac{1}{15}}=\dfrac{z}{\dfrac{1}{20}}\)

\(\Rightarrow12x=15y=20z\)

\(12x=15y\Rightarrow\dfrac{x}{15}=\dfrac{y}{12}\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}\) (1)

\(15y=20z\Rightarrow\dfrac{y}{20}=\dfrac{z}{15}\Rightarrow\dfrac{y}{4}=\dfrac{z}{3}\) (2)

Từ (1) (2) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{60}{12}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=5\Rightarrow x=5\cdot5=25\\\dfrac{y}{4}=5\Rightarrow y=5\cdot4=20\\\dfrac{z}{3}=5\Rightarrow z=5\cdot3=15\end{matrix}\right.\)

Vậy ...

25 tháng 3 2017

Hì, mình mới lớp 6.

26 tháng 3 2017

mk chưa cả thi huyện mà bn đã thì tỉnh rùi oho

25 tháng 4 2017

Mấy cái nghiệm nghiệm này dễ lẫn lộn v~ nhìn mãi mới thấy toán 7 thì nghiệm chắc chắn = 0 :v

\(2\left(x+3\right)-5x+2=0\)

\(\Leftrightarrow2x+6-5x+2=0\)

\(\Leftrightarrow-3x+8=0\)

\(\Rightarrow x=\dfrac{8}{3}\)

Vậy nghiệm của đa thức bằng \(\dfrac{8}{3}\)

30 tháng 8 2017

>> Mình không chép lại đề bài nhé ! <<

Cách 1 :

\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)

Cách 2 :

\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)

\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)

\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)

30 tháng 8 2017

Cách 1 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)

\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)

\(=-\dfrac{5}{2}\)

Cách 2 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)

\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)

\(=\left(-2\right)+0+\dfrac{-1}{2}\)

\(=\dfrac{-5}{2}\)

6 tháng 2 2017

MNE = MPF

MND =MPD

DME = DMF

7 tháng 2 2017

3. Xét tam giác ADM và tam giác AEM có :

góc ADM = góc AEM = 90 độ

Góc BAM = góc CAM (gt)

AM chung

=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)

=>MD = ME (cặp cạnh t/ứng )

AD = AE (cặp cạnh t/ứng )

Xét tam giác MDB và tam giác MEC có :

MB = MC (gt)

góc MDB = góc MEC = 90 độ

MD = ME ( câu a)

=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)

Vì AD + DB = AB

AE + EC = AC

Mà AD = AE

DB = EC

=>AB = AC

Xét tam giác ABM và tam giác ACM có

AM chung

góc BAM = góc CAM (gt)

AB = AC (CMT)

=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)

Vậy có 3 cặp tam giác bằng nhau


26 tháng 7 2017

- Gọi số học sinh các lớp 7A, 7B, 7C lần lượt là : a, b, c

- Ta có :\(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{3c}{5}=\dfrac{12a}{18}=\dfrac{12b}{16}=\dfrac{12c}{15}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{12a}{18}=\dfrac{12b}{16}=\dfrac{12c}{15}=\dfrac{12a+12b-12c}{18+16-15}=\dfrac{12\left(a+b-c\right)}{19}=\dfrac{12.54}{19}=36\)

=> a = \(36\cdot\dfrac{3}{2}\)=54;

b = \(36\cdot\dfrac{4}{3}\) =48;

c= \(36\cdot\dfrac{5}{4}\)= 45

- Vậy số học sinh mỗi lớp 7A, 7B, 7C lần lượt là 54, 48 , 45