NHỚ LÀ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC có AB<AC<BC

mà \(\widehat{ACB};\widehat{ABC};\widehat{BAC}\) lần lượt là các góc đối diện của các cạnh AB,AC,BC

nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

b: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

\(\widehat{ABK}=\widehat{HBK}\)

Do đó: ΔBAK=ΔBHK

c: Ta có: ΔBAK=ΔBHK

=>KA=KH

Xét ΔKAI vuông tại A và ΔKHC vuông tại H có

KA=KH

AI=HC

Do đó: ΔKAI=ΔKHC

=>\(\widehat{AKI}=\widehat{HKC}\)

mà \(\widehat{HKC}+\widehat{AKH}=180^0\)(hai góc kề bù)

nên \(\widehat{AKH}+\widehat{AKI}=180^0\)

=>H,K,I thẳng hàng

d: Xét ΔBIC có \(\dfrac{BA}{AI}=\dfrac{BH}{HC}\)

nên AH//IC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

BD=CE
\(\widehat{ABD}=\widehat{ACE}\)

Do đó: ΔABD=ΔACE

Suy ra: AB=AC

hay ΔABC cân tại A

b: XétΔABC có 

AD là đường cao

CH là đường cao

AD cắt CH tại D

Do đó: D là trực tâm của ΔABC

=>BD vuông góc với AC

6 tháng 2 2017

MNE = MPF

MND =MPD

DME = DMF

7 tháng 2 2017

3. Xét tam giác ADM và tam giác AEM có :

góc ADM = góc AEM = 90 độ

Góc BAM = góc CAM (gt)

AM chung

=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)

=>MD = ME (cặp cạnh t/ứng )

AD = AE (cặp cạnh t/ứng )

Xét tam giác MDB và tam giác MEC có :

MB = MC (gt)

góc MDB = góc MEC = 90 độ

MD = ME ( câu a)

=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)

Vì AD + DB = AB

AE + EC = AC

Mà AD = AE

DB = EC

=>AB = AC

Xét tam giác ABM và tam giác ACM có

AM chung

góc BAM = góc CAM (gt)

AB = AC (CMT)

=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)

Vậy có 3 cặp tam giác bằng nhau


Ta có :

\(\frac{-11}{6}< x< \frac{20}{13}\)

\(\Rightarrow-1\frac{5}{6}< x< 1\frac{7}{13}\)

\(\Rightarrow-2< x< 2\)

=> x ∈ { -1 ; 0 ; 1 } ( do x ∈ Z )

13 tháng 8 2021

BÀI8

B 1 = 75    B2=105   K1 =90

HT

NM
6 tháng 10 2021

ta có : Do NB song song với MA nên

\(\hept{\begin{cases}\widehat{ABN}+\widehat{MAB}=180^0\\\widehat{ABN}-\widehat{MAB}=40^0\end{cases}}\Rightarrow2\widehat{MAB}=180^0-40^0=140^0\)

Nên \(\widehat{MAB}=70^0\)