Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1) a) \(A=\left(2x-5\right)^2-4\left(2x-5\right)+5=4x^2-20x+25-8x+20+5\)
\(A=4x^2-28x+49+1=\left(2x-7\right)^2+1\ge1\forall m\)(đpcm)
b) \(A=\left(2x-7\right)^2+1\ge1\) \(\Rightarrow minA=1\Leftrightarrow\left(2x-7\right)^2=0\Leftrightarrow2x-7=0\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\)
Bài 1:
a)\(A=\left(2x-5\right)^2-4\left(2x-5\right)+5\)
\(=\left(2x-5\right)^2-4\left(2x-5\right)+4+1\)
\(=\left(2x-5-2\right)^2+1\)
\(=\left(2x-7\right)^2+1\ge1\)
b)Xảy ra khi \(\left(2x-7\right)^2=0\)
\(\Rightarrow2x-7=0\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
Bài 2:
a)\(B=-\left(3x+7\right)^2+2\left(3x+7\right)-17\)
\(=-\left(3x+7\right)^2+2\left(3x+7\right)-1-16\)
\(=-\left[\left(3x+7\right)^2-2\left(3x+7\right)+1\right]-16\)
\(=-\left(3x+7-1\right)^2-16\)
\(=-\left(3x+6\right)^2-16\le-16\)
b)Xảy ra khi \(-\left(3x+6\right)^2=0\)
\(\Rightarrow3x+6=0\Rightarrow3x=-6\Rightarrow x=-2\)
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
Bài 1 :
x2-2x+2>0 với mọi x
=x2-2.x.1/4+1/16+31/16
=(x-1/4)2 + 31/16
Vì (x-1/4)2 \(\ge\) 0 nên (x-1/4)2 + 31/16 \(\ge\) 0 với mọi x (đfcm)
bài 1:
a. \((x+1)(x+3) - x(x+2)=7 \)
\(x^2+ 3x +x +3 - x^2 -2x =7\)
\(x^2+4x+3-x^2-2x=7\)
\(=> 2x+3=7\)
\(2x=4\)
\(x = 2\)
Bài 2:
a)
\((3x-5)(2x+11) -(2x+3)(3x+7) \)
\(= 6x^2 +33x-10x-55-6x^2-14x-9x-10\)
\(= (6x^2-6x^2)+(33x-10x-14x-9x)-(55+10)\)
\(=-65\)
\(\)