Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
HB là hình chiếu của AB trên BC
HC là hình chiếu của AC trên BC
mà HB<HC
nên AB<AC
=>\(\widehat{ABC}>\widehat{ACB}\)
b: Xét ΔHDC có
DE là đường trung tuyến
CA là đường trung tuyến
DE cắt CA tại F
DO đó: F là trọng tâm của ΔHDC
=>HF là đường trung tuyến ứng với cạnh DC
hay H,F,M thẳng hàng(M là trung điểm của CD)
c:
Ta có: EK//AC
AB\(\perp\)AC
Do đó: EK\(\perp\)AB
Xét ΔEAB có
EK là đường cao
AH là đường cao
EK cắt AH tại P
Do đó: P là trực tâm của ΔABE
Suy ra: BP vuông góc với AE
a: Xét ΔABC có
HB là hình chiếu của AB trên BC
HC là hình chiếu của AC trên BC
mà HB<HC
nên AB<AC
=>\(\widehat{ABC}>\widehat{ACB}\)
b: Xét ΔHDC có
DE là đường trung tuyến
CA là đường trung tuyến
DE cắt CA tại F
DO đó: F là trọng tâm của ΔHDC
=>HF là đường trung tuyến ứng với cạnh DC
hay H,F,M thẳng hàng(M là trung điểm của CD)
c:
Ta có: EK//AC
AB\(\perp\)AC
Do đó: EK\(\perp\)AB
Xét ΔEAB có
EK là đường cao
AH là đường cao
EK cắt AH tại P
Do đó: P là trực tâm của ΔABE
Suy ra: BP vuông góc với AE
a) Xét \(\Delta EDC\)và \(\Delta BAC\)
có \(\widehat{EDC}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ACB}\)chung
nên \(\Delta EDC\)\(\Delta BAC\)(g - g)
\(\Rightarrow\frac{EC}{BC}=\frac{CD}{AC}\Rightarrow\frac{EC}{CD}=\frac{BC}{AC}\)
Xét \(\Delta BEC\)và \(\Delta ADC\)
có \(\frac{EC}{CD}=\frac{BC}{AC}\)
\(\widehat{ACB}\)chung
nên \(\Delta BEC\)\(\Delta ADC\)(c - g - c)
Xét \(\Delta AHD\)
ta có AH = HD suy ra \(\Delta AHD\)cân tại H
mà \(\widehat{HAD}=90^0\)nên \(\Delta AHD\)vuông cân tại H
suy ra \(\widehat{ADH}=45^0\)
Gọi giao điểm của AD và BE là O
Xét \(\Delta AOE,\Delta BOD\)
có \(\widehat{OAE}=\widehat{OBD}\)(\(\Delta BEC\)\(\Delta ADC\))
\(\widehat{AOE}=\widehat{BOD}\)(đối đỉnh)
nên \(\Delta AOE\)\(\Delta BOD\)(g - g)
\(\Rightarrow\widehat{AEB}=\widehat{ADH}=45^0\)
Xét \(\Delta ABE\)vuông tại A
có \(\widehat{AEB}=45^0\)nên \(\Delta ABE\)vuông cân tại A
suy ra BE = 2\(\sqrt{AB}\)=\(2\sqrt{2}\)(cm)
b) Gọi giao điểm của AH và BE là I
dễ chứng minh \(\Delta HBA\)\(\Delta ABC\)(g - g)
\(\Rightarrow\frac{AB}{BC}=\frac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)
có AB = 2 cm, BE = \(2\sqrt{2}\left(cm\right)\)
\(\Rightarrow\frac{AB}{BE}=\frac{1}{\sqrt{2}}\Rightarrow\frac{AB^2}{BE^2}=\frac{1}{2}\Rightarrow\frac{BH\cdot BC}{BE^2}=\frac{1}{2}\)
\(\Rightarrow\frac{BH}{BE}\cdot\frac{BC}{BE}=\frac{1}{2}\Rightarrow\frac{BH}{BE}=\frac{1}{2}\cdot\frac{BE}{BC}\Rightarrow\frac{BH}{BE}=\frac{BM}{BC}\)
Xét \(\Delta BHM\)và \(\Delta BEC\)
có \(\frac{BH}{BE}=\frac{BM}{BC}\)
\(\widehat{EBC}\)chung
nên \(\Delta BHM\)\(\Delta BEC\)(c - g - c)
\(\Rightarrow\widehat{IMH}\left(\widehat{BMH}\right)=\widehat{BCE}\)
mà \(\widehat{BCE}=\widehat{IAB}\)(cùng phụ với góc \(\widehat{B}\))
\(\Rightarrow\widehat{IMH}=\widehat{IAB}\)
dễ cm \(\Delta IAB\)\(\Delta IMH\)(g - g)
\(\Rightarrow\widehat{AHM}\left(\widehat{IHM}\right)=\widehat{IBA}=45^0\)
c) có AK là phân giác \(\Delta ABC\)
nên \(\frac{BK}{KC}=\frac{AB}{AC}\Rightarrow\frac{BK}{KC+BK}=\frac{AB}{AB+AC}\Rightarrow\frac{BK}{BC}=\frac{AB}{AB+AC}\)(1)
dễ cm \(\Delta ABH\)\(\Delta CAH\)(g - g)
\(\Rightarrow\frac{AB}{AC}=\frac{AH}{HC}\Rightarrow\frac{AB}{AB+AC}=\frac{AH}{AH+HC}\Rightarrow\frac{AB}{AB+AC}=\frac{HD}{AH+HC}\)(2)
từ (1) và (2) suy ra
\(\frac{BK}{BC}=\frac{HD}{AH+HC}\)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
b: Xét ΔBAD có MN//AD
nên MN/AD=BM/BA(1)
Xét ΔBCA có MH//AC
nên MH/AC=BM/BA(2)
Từ (1) và (2) suy ra MN/AD=MH/AC
hay MN/MH=AD/AC