Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)747 ∉ P; 235 ∉ P; 97 ∈ P
b)Vì 835.123 và 318 đều chia hêt cho 3 nên a = 835 + 123 + 318 cũng chia hết cho 3. Vậy a ∉ P;
c)VÌ 5.7.11 và 13.17 đều là những số lẻ nên b = 5.7.11 + 13.17 là một số chẵn; do đó nó có ước là 2, khác 1 và b. Vậy b ∉ P;
d)Vì 2.5.6 và 2. 29 đều chia hết cho 2 nên c = 2.5.6 – 2. 29 ∉ P.
a) 747\(\notin\) P ( vì 747 \(⋮\) 9 ) ; 235 \(\notin\) p (vì 235 \(⋮\) 5) ; 97\(\in\) P
b) a= 835. 123+318 \(\notin\) P ( vì 835 . 123 \(⋮\) 3 và 318 cũng \(⋮\) 3 nên 835.123 + 318 \(⋮\) 3)
c) b= 5.7 .11+ 13.17 \(\notin\) P ( vì 5.7.11 có kết qủa là số lẻ và 13. 17 cũng là 1 số lẻ. Mà lẻ+ lẻ thì = chẵn nên b \(⋮\) 2)
d) c= 2. 5. 6 - 2.29 \(\in\) P ( vì c=2.5.6- 2.29=60 - 58= 2 )
![](https://rs.olm.vn/images/avt/0.png?1311)
Hop so be nhat la 4
Ta co: 2015=4+4+4+...+4+15 (500 so 4)
Vi 4 va 15 la hop so
Vay co tat ca 501 cach viet
Tick cho minh nhe
Hợp số bé nhất là 4
> Ta có:2015=4+4+4+....+4+15( có tất cả 500 số 4)
Vì ta thấy 4 và 15 là hợp số
vậy nên suy ra ta sẽ có tất cả 501 cách viết
Tick mink nhé @Trịnh Minh Thành
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\Leftrightarrow n^2+4n+3n+12-10⋮n+4\)
\(\Leftrightarrow n+4\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{1;6\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)
\(=9999.\overline{ab}+\overline{ab}+99.\overline{cd}+\overline{cd}+\overline{eg}\)
\(=\left(9999.\overline{ab}+99.\overline{cd}\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì : \(9999.\overline{ab}+99.\overline{cd}⋮11\) và \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)
Ta có:
\(\overline{abcdeg}=\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)
\(=\overline{ab}.11.909+\overline{cd}.11.9+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
\(=11\left(\overline{ab}.909+\overline{cd}.9\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Vì \(11\left(\overline{ab}.909+\overline{cd}.9\right)⋮11\) và \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)
nên \(\overline{abcdeg}⋮11\)
Vậy nếu \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\) thì \(\overline{abcdeg}⋮11\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
1,=0 . [2017/2018+2018/2019]
=>0
2,TH1 x-3=0=>x=3
TH2 y-4=0=>y=4
3, -2/4 = -x/10 = 16/y
=>-1/2 = -x/10 = 16/y
=>-1/2 = -x/10 => -5/10 = -x/10 => x=5
-1/2 = 16/y => 16/-32 = 16/y => y = -32
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=2.\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\right)\)
\(A=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+....+\dfrac{3}{95.98}\right)\)
\(A=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(A=\dfrac{2}{3}\dfrac{24}{49}=\dfrac{16}{49}\)
Ta có: A=\(\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}\)
\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{49}{98}-\dfrac{1}{98}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\dfrac{48}{98}\)
\(\Rightarrow A=\dfrac{3.2.2.12}{2.2.49}\)
\(\Rightarrow A=\dfrac{36}{49}\)
Hướng dẫn
M = (2;17|; N= {3;s;t); P = {dép); Q = {dép, áo, mu).