Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) ta có
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)
Bài 1. Đặt \(a=\sqrt{x+3},b=\sqrt{x+7}\)
\(\Rightarrow a.b+6=3a+2b\) và \(b^2-a^2=4\)
Từ đó tính được a và b
Bài 2. \(\frac{2x-1}{x^2}+\frac{y-1}{y^2}+\frac{6z-9}{z^2}=\frac{9}{4}\)
\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}+\frac{1}{y}-\frac{1}{y^2}+\frac{6}{z}-\frac{9}{z^2}-\frac{9}{4}=0\)
Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)
Ta có \(2a-a^2+b-b^2+6c-9c^2-\frac{9}{4}=0\)
\(\Leftrightarrow-\left(a^2-2a+1\right)-\left(b^2-b+\frac{1}{4}\right)-\left(9c^2-6c+1\right)=0\)
\(\Leftrightarrow-\left(a-1\right)^2-\left(b-\frac{1}{2}\right)^2-\left(3c-1\right)^2=0\)
Áp dụng tính chất bất đẳng thức suy ra a = 1 , b = 1/2 , c = 1/3
Rồi từ đó tìm được x,y,z
(Bình thường mà)
Tính \(\Delta_x=\left(2012+y\right)^2-4\left(2013+y\right)=\left(y+2010\right)^2-8\)
Để pt có nghiệm nguyên thì trước hết \(\Delta_x\) chính phương.
Mà bản thân số \(\left(y+2010\right)^2\) đã chính phương nên ta chỉ cần tìm 2 số chính phương lệch nhau 8 đơn vị.
Đó là số \(1\) và \(9\).
\(\left(y+2010\right)^2=9\) vì đây là số chính phương lớn hơn. Đến đây bạn tìm được \(y\) và sẽ suy ra \(x\).
Mình chỉ có thắc mắc là tại sao \(\Delta_x\) phải là chính phương thì nghiệm nguyên thôi?
\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\) (1)
ĐKXĐ: x >= -1
Đặt x -2 = a; \(\sqrt{x+1}=b\)
Có \(x^2+4x+12=x^2-4x+4+8x+8=\left(x-2\right)^2+8\left(x+1\right)\)
=> \(\sqrt{x^2+4x+12}=\sqrt{\left(x-2\right)^2+8\left(x+1\right)}=\sqrt{a^2+8b^2}\)
(1) => \(\sqrt{a^2+8b^2}=2a+b\)
<=> \(\hept{\begin{cases}2a+b\ge0\\a^2+8b^2=\left(2a+b\right)^2\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\3a^2+4ab-7b^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\\left(a-b\right)\left(3a+7b\right)=0\end{cases}}\)
TH1: \(\hept{\begin{cases}2a+b\ge0\\a=b\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\\sqrt{x+1}=x-2\end{cases}}\)
<=> \(\hept{\begin{cases}2\left(x-2\right)+\sqrt{x+1}\ge0\\x>2\\x+1=\left(x-2\right)^2\end{cases}}\)<=> \(x=\frac{5+\sqrt{5}}{2}\)
TH2: 3a+7b=0
Trường hợp 2 dài lắm nhưng cuối cùng kết quả vô nghiệm nhé!
P/s: mình không học đội tuyển toán nên mình cũng không biết cách này có được không nữa, mình chỉ làm theo cách cơ bản thôi! Bạn thông cảm nhé!
học sinh tiên tiến bằng 3/9 lớp -> 4/9 lớp
tăng 5 HS bằng 1/9 lớp
số HS của lớp: 5:1/9=45HS
Ta có:\(1-\left(-2\right)-3=0\) suy ra pt có 2 nghiệm
x1= -1; x2= \(\frac{-c}{a}=\frac{-\left(-3\right)}{1}=3\)
chỉ đáng toán 7
x^3 - 2x^2 - 3x = 0 => ( x^3 + x^2 ) - ( 3x^2 + 3x ) = 0 => x^2 * ( x - 1 ) - 3x * ( x -1 ) = 0 => ( x^2 - 3x ) * ( x - 1 ) = 0 => x^2 - 3x = 0 hoặc x - 1 = 0 => x * ( x - 3 ) = 0 hoặc x = 1 => x = 0 hoặc x - 3 = 0 hoặc x = 1 => x = 0 hoặc x = 3 hoặc x = 1
Vậy x = { 0 ; 1 ; 3 }
Mình học lớp 7
Nhớ cho minh nhiều nhá bạn .
Câu 2 : x^+x+y^2+x = x(x+1) +y(y+1) chia cho vế trái (x+1)(y+1) ...
Bài toán dễ dàng :V
Mình nhớ có học qua rùi mà dốt quá trả chữ cho thầy cô hết trơn :)
Dùng cách phân tích thành nhân tử, ta có thể viết phương trình như sau :
\(x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)
hay \(\left(x-4\right)\left(x^3-19x+30\right)=0\)
\(\left(x-4\right)\left(x^3-3x^2-9x-10x+30\right)=0\)
Ta được phương trình tích sau : \(\left(x-4\right)\left(x-3\right)\left(x^2-3x-10\right)=0\)
\(S=x_1=4;x_2=3;x_i=2;x_4=-5\)