Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt:
\(m_1=0,5kg\)
\(m_2=500g=0,5kg\)
\(t_1=80^oC\)
\(t=20^oC\)
\(\Rightarrow\Delta t_1=t_1-t=80-20=60^oC\)
\(c_1=380J/kg.K\)
\(c_2=4200J/kg.K\)
===========
\(Q_2=?J\)
\(\Delta t_2=?^oC\)
Do nhiệt lượng của quả cầu tỏa ra bằng nhiệt lượng của nước nhận vào nên:
\(Q_2=Q_1=m_1.c_1.\Delta t_1=0,5.380.60=11400J\)
Nhiệt độ mà nước tăng thêm:
Theo phương trình cân bằng nhiệt:
\(Q_1=Q_2\)
\(\Leftrightarrow11400=m_2.c_2.\Delta t_2\)
\(\Leftrightarrow\Delta t_2=\dfrac{11400}{m_2.c_2}\)
\(\Leftrightarrow\Delta t_2=\dfrac{11400}{0,5.4200}\approx5,4^oC\)
Ta có pt cân bằng nhiệt
\(Q_{thu}=Q_{tỏa}\\ \Rightarrow Q_{thu}=0,5.380\left(80-20\right)=11400J\)
Nước nóng thêm số độ
\(\Delta t^o=\dfrac{Q_{thu}}{mc}=\dfrac{11400}{0,5.4200}=5,42^o\)
a)phương trình cân bằng nhiệt
\(Q_{thu}=Q_{tỏa}\)
\(=>Q_{thu}=m_1.c_1.\Delta t_1=0,5.380.\left(120-20\right)=19000J\)
b) nước nóng lên thêm số độ là
\(\Delta t^o=\dfrac{Q_{thu}}{m_1.c_1}=\dfrac{19000}{0,5.4200}\approx9,05^oC\)
Ta có phương trình cân bằng nhiệt
\(Q_{toả}=Q_{thu}\)
--> Nhiệt lượng nước nhận đc là
\(Q_{thu}=0,5.380\left(100-40\right)=11400J\)
Độ tăng nhiệt của nước
\(\Delta t=\dfrac{Q}{mc}=\dfrac{11400}{0,5.4200}=5,42^o\)
Ta có : Q1 = m1.c1.(t1 - t) =0.5.380.(80-20) = 11400
Q2 = m2.c2.(t - t2) = 0,5.4200.(20 - t2) = 42000 - 2100.t2
Theo pt cân bằng nhiệt , ta có :
Q1 = Q2
11400 = 42000 - 2100.t2
t2 = 14,57
t' = t - t2 = 20 - 14,57 = 5,43
Vậy nước nhận một nhiệt lượng là 11400 và nóng lên 5,43 độ
Chúc bạn học tốt ^o^
Ta có : Q1 = m1.c1.(t1 - t) =0.5.380.(80-20) = 11400
Q2 = m2.c2.(t - t2) = 0,5.4200.(20 - t2) = 42000 - 2100.t2
Theo pt cân bằng nhiệt , ta có :
Q1 = Q2
11400 = 42000 - 2100.t2
t2 = 14,57
t' = t - t2 = 20 - 14,57 = 5,43
Vậy nước nhận một nhiệt lượng là 11400 và nóng lên 5,43 độ
Chúc bạn học tốt
Cân bằng nhiệt:
\(Q_n=Q_{nhom}=mc\left(t_1-t\right)=0,5\cdot880\cdot60=26400\left(J\right)\)
Nước nóng lên thêm:
\(Q_n=mc\Delta t=0,5\cdot4200\Delta t\)
\(\Leftrightarrow26400=2100\Delta t\)
\(\Leftrightarrow\Delta t\approx12,6^0C\)
Tóm tắt
\(m_1=0.5kg\\ m_2=500g=0,5kg\\ t_1=80^0C\\ t=20^0C\\ c_1=880J/kg.K\\ c_2=4200J/kg.K\\ \Rightarrow\Delta t_1=t_1-t=80-20=60^0C\)
______________
\(Q_2=?J\\ \Delta t_2=?^0C\)
Giải
Nhiệt lượng nước nhận được là:
\(Q_2=Q_1=m_1.c_1.\Delta t_1=0,5.880.60=26400J\)
Nhiệt độ mà nước nóng lên là:
\(Q_1=Q_2\\ \Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\\ \Leftrightarrow0,5.880.60=0,5.4200.\Delta t_2\\ \Leftrightarrow26400=2100\Delta t_2\\ \Leftrightarrow\Delta t_2\approx12,6^0C\)
Tóm tắt
\(m_1=0,5kg\\ m_2=500g=0,5kg\\ t_1=80^0C\\ t=20^0C\\ \Rightarrow\Delta t_1=t_1-t=80-20=60^0C\\ c_1=380J/kg.K\\ c_2=4200J/kg.K\)
_______________
\(a)Giả thích\)
b)\(Q_2=?J\\ \Delta t_2=?^0C\)
Giải
a) Nhiệt năng của miếng đồng giảm đi cong nhiệt năng của nước tăng lên.
Đây là sự truyền nhiệt
b) Nhiệt lượng do nước thu vào là:
\(Q_2=Q_1=m_1.c_1.\Delta t_1=0,5.380.60=11400J\)
Theo phương trình cân bằng nhiệt ta có:
\(Q_1=Q_2\)
\(\Leftrightarrow m_1.c_1.\Delta t_1=m_2.c_2.\Delta t_2\)
\(\Leftrightarrow0,5.380.60=0,5.4200.\Delta t_2\)
\(\Leftrightarrow11400=2100\Delta t_2\)
\(\Leftrightarrow\Delta t_2=\dfrac{11400}{2100}\)
\(\Leftrightarrow\Delta t_2=5,4^0C\)
a/ Nhiệt năng của đồng giảm do cho nước còn nhiệt năng của nước tăng do nhận thêm nhiệt của đồng . Đây là truyền nhiệt
m1=0,5kg
t1=80oC
t=20oC
m2=500g=0,5kg
c1=380J/kg.K
c2=4200J/kg.K
______________
Δt2=?
Giải
Khi phương trình cân bằng nhiệt:
Qtoả=Qthu
<=>m1.c1. Δt1=m2.c2. Δt2
<=>m1.c1.(t1-t)=m2.c2. Δt2
<=>0,5.380.(80-20)=0,5.4200. Δt2
<=>11400=2100. Δt2
=> Δt2=11400/2100=5,4oC
Nhiệt lượng nước nhận được bằng đúng nhiệt lượng do miếng đồng tỏa ra là:
Q2 = Q1 = m1.c1.(t1 - t) = 0,5.380.(80 - 20) = 11400 J
Độ tăng nhiệt độ của nước là: