Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n=-5n chia hết cho 5 với mọi n thuộc Z(đpcm)
2n-3/n+1 = (2n+2)-5/n+1 = 2n+2/n+1 - 5/n+1 = 2 - 5/n+1
\(\Rightarrow\) n+1 \(\in\) U(5)
\(\Rightarrow\) n = -6;-2;0;4
\(n\left(n^2+1\right)\left(n^2+4\right)\)
\(=n\left(n^2-4+5\right)\left(n^2-1+5\right)\)
\(=n\left[\left(n-2\right)\left(n+2\right)+5\right]\left[\left(n-1\right)\left(n+1\right)+5\right]\)
\(=\left[n\left(n-2\right)\left(n+2\right)+5n\right]\left[\left(n-1\right)\left(n+1\right)+5\right]\)
\(=\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)\(+5n^2\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
Vì ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) là tích 5 số nguyên liên tiếp
=> ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) chia hết cho 5
=> ( n - 2 )( n - 1 )n( n + 1 )( n + 2 ) + 5n^2( n - 2 )( n - 1 )( n + 1 )( n + 2 ) chia hết cho 5
\(\Rightarrow n\left(n^2+1\right)\left(n^2+4\right)⋮5\)
Trả lời
\(2n-3⋮n+1\)
\(\Rightarrow2\left(n+1\right)-5⋮n+1\)
\(\Rightarrow5⋮n+1\)
Vì \(n\inℤ\Rightarrow n+1\inℤ\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{-1;5;-5;1\right\}\)
Ta có bảng giá trị
Đối chiếu điều kiện \(n\inℤ\)
Vậy \(n\in\left\{-2;-6;0;4\right\}\)
Vì 2n-3chia hết cho n+1 {n e Zsao}
=>2{n+1}-5 chia hết cho n-1 [mà 2{n-1} chia hết cho n-1]
=>n-1 e Ư{-5}={-1;-5;1;5}
=>n e [0;-4;2;6]