K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

Tham khảo

Tam giác đều và ngũ giác dều không có tâm đối xứng. * Hình bình hành có một tâm đối xứng là giao điểm của hai đường chéo. * Hình lục giác đều có một tâm đối xứng, đó là tâm đường tròn ngoại tiếp hình lục giác đều.

27 tháng 9 2018

SGK ... Tam giác cân không có tâm đối xứng đâu... Trục đối xứng của tam giác cân là ... Khó nói quá . VD nha : tam giác ABC cân tại A TH1 : kẻ AH vuông góc với BC => AH là trục đối xứng ( CM được tam giác ABH = ACH => ĐPCM) (1)

TH2 : Kẻ trung tuyến AI vì tam giác ABC cân tại A nên => AI vừa là trung tuyến vừa là đường cao => Tương tự (1) 

Nhớ được các trường hợp đặc biệt của các đường trung tuyến, phân giác, đường cao ..v..v... trong tam giác cân thì cứ biện luận thôi, không cần phải giải thích nhiều vì ta công nhận điều đó là đúng ...

30 tháng 10 2016

Tam giác đều có 3 trục đối xứng nha bạn 

7 tháng 11 2018

Tam giác đều ABC là hình không có tâm đối xứng.

22 tháng 12 2016

132 độ

22 tháng 12 2016

chỉ mình cách giải được không bạn

7 tháng 11 2021

C

7 tháng 11 2021

C

30 tháng 9 2017

Bạn tự vẽ hình nhé.

a) Vì M và G đối xứng với nhau qua BC nên BC là đường trung trực của GM

\(\Rightarrow BG=BM;GC=CM\)

Xét tam giác BGC và tam giác BMC có:

BC - chung

BG = BM (chứng minh trên)

GC = CM (chứng minh trên)

\(\Rightarrow\)tam giác BGC = tam giác BMC (c - c - c)

b) VÌ tam giác ABC là tam giác đề nên: +) Khoảng cách từ trọng tâm tới các đỉnh là bằng nhau \(\Rightarrow BG=GC\Rightarrow\)tam giác BGC cân tại G \(\Rightarrow\)tam giác BMC cân tại M.

+) Đường trung tuyến cũng đồng thời là đường phân giác \(\Rightarrow\widehat{GBC}=\frac{1}{2}60^0=30^0\).

\(\Rightarrow\)\(\widehat{GBC}=\widehat{CBM}=\widehat{BCM}=30^0\)

\(\Rightarrow\widehat{BMC}=180^0-30^0-30^0=120^0\)

Vậy \(\widehat{CBM}=\widehat{BCM}=30^0\)

\(\widehat{BMC}=120^0\)

                                                         

12 tháng 9 2018

Bạn tự vẽ hình nhé.

a) Vì M và G đối xứng với nhau qua BC nên BC là đường trung trực của GM

⇒BG=BM;GC=CM

Xét tam giác BGC và tam giác BMC có:

BC - chung

BG = BM (chứng minh trên)

GC = CM (chứng minh trên)

tam giác BGC = tam giác BMC (c - c - c)

b) VÌ tam giác ABC là tam giác đề nên: +) Khoảng cách từ trọng tâm tới các đỉnh là bằng nhau ⇒BG=GC⇒tam giác BGC cân tại G tam giác BMC cân tại M.

+) Đường trung tuyến cũng đồng thời là đường phân giác ⇒^GBC=12 600=300.

^GBC=^CBM=^BCM=300

⇒^BMC=1800−300−300=1200

Vậy ^CBM=^BCM=300

^BMC=1200