K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

\(x^3-6x^2-25x-18=0\)

\(\Leftrightarrow x^2\left(x+1\right)-7x\left(x+1\right)-18\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-7x-18\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x-9x-18\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[x\left(x+2\right)-9\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+2=0\\x-9=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-2\\x=9\end{array}\right.\)

Vậy nghiệm nhỏ nhất của phương trình là \(-2\)

25 tháng 1 2019

\(x^3-6x^2-25x-18=0\)

<=>   \(x^3-9x^2+3x^2-27x+2x-18=0\)

<=>  \(x^2\left(x-9\right)+3x\left(x-9\right)+2\left(x-9\right)=0\)

<=>  \(\left(x-9\right)\left(x^2+3x+2\right)=0\)

<=>  \(\left(x-9\right)\left(x+1\right)\left(x+2\right)=0\)

..................

làm nốt

5 tháng 3 2015

Ta có:\(x^3-6x^2-25x-18=0\Leftrightarrow x^3+2x^2-8x^2-16x-9x-18=0\Leftrightarrow x^2\left(x+2\right)-8x\left(x+2\right)-9\left(x+2\right)=0\)\(\Leftrightarrow\left(x+2\right)\left(x^2+x-9x-9\right)=0\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(x-9\right)=0\)

Vậy x=-2;-1;9 hay x min = -2

9 tháng 2 2016

Ta có:x^3-6x^2-25x-18=0 <=> x^3+2x^2-8x^2-16x-9x-18=0

<=> x^2 (x+2)-8x(x+2)-9(x+2)=0  <=> (x+2)(x2+x−9x−9)=0⇔(x+2)(x+1)(x−9)=0

Vậy x=-2;-1;9 hay x min = -2

9 tháng 2 2016

chúc cậu năm mới vui vẻ

1 tháng 9 2016

\(x^2-4x-5=0\)

\(x^2+x-5x-5=0\)

\(x\left(x+1\right)-5\left(x+1\right)=0\)

\(\left(x-5\right)\left(x+1\right)=0\)

TH1:

\(x-5=0\)

\(x=5\)

TH2:

\(x+1=0\)

\(x=-1\)

Vậy \(x=5\) và \(x=-1\) là nghiệm của phương trình \(x^2-4x-5\)

=> Nghiệm nhỏ nhất của phương trình đó là \(x=-1\)

1 tháng 9 2016

\(x^2-4x-5\)

\(=\left(x-2\right)^2-9\)

Ta có : \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2-9\ge-9\)

Dấu " = " xảy ra khi và chỉ khi : \(x-2=0\)

                                                      \(x=0+2\)

                                                        \(x=2\)

 

28 tháng 12 2017

a) b) HS tự làm.

c) Hai phương trình đã cho không tương đương.

23 tháng 11 2021

25(x2-1)=0

x2-1=0:25

x2-1=0

x2=1

x=\(\sqrt{1}\)

23 tháng 11 2021

25-25x2=0

⇔25(1-x2)=0

⇔25(1-x)(1+x)=0

⇔1-x=0 hay 1+x=0

⇔x=1 hay x=-1

NV
23 tháng 1 2021

\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)

\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)

\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\) 

Pt đã cho luôn có 3 nghiệm (như trên) với mọi a

\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)

\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất

Ta có :

\(\left(x^2-2014\right)\left(x^2-2015\right)\left(x^2-2016\right)\)\(=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x^2-2014=0\\x^2-2015=0\\x^2-2016=0\end{cases}}\)

Giải (1) :

    \(x^2-2014=0\)

     \(\hept{\begin{cases}x=\sqrt{2014}\\x=-\sqrt{2014}\end{cases}}\)

Giải (2) :

     \(x^2-2015=0\)

        \(\hept{\begin{cases}x=\sqrt{2015}\\x=-\sqrt{2015}\end{cases}}\)

Giải (3) :

   \(x^2-2016=0\)

    \(\hept{\begin{cases}x=\sqrt{2016}\\x=-\sqrt{2016}\end{cases}}\)

Vậy nghiệm nhỏ nhất của phương trình là \(x=-\sqrt{2016}\)

Chú ý : \(x^2-2014=0\)(1)

            \(x^2-2015=0\)(2)

            \(x^2-2016=0\)(3)

11 tháng 5 2020

Tui hổng biết

11 tháng 5 2020

Tui hổng biết