Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-5x+3=0\)
Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)
a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)
b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)
c) \(C=\left|x_1-x_2\right|\)>0
=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)
=> C = căn 13
d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)
e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)
g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)
\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
Theo hệ thức Vi-et\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-1\\x_1x_2x_3=1\end{cases}}\)
Ta có \(T=\frac{1+x_1}{1-x_1}+\frac{1+x_2}{1-x_2}+\frac{1+x_3}{1-x_3}\)
\(=\frac{x_1-1}{1-x_2}+\frac{2}{1-x_1}+\frac{x_2-1}{1-x_2}+\frac{2}{1-x_2}+\frac{x_3-1}{1-x_3}+\frac{2}{1-x_3}\)
\(=-1+\frac{2}{1-x_1}-1+\frac{2}{1-x_2}-1+\frac{2}{1-x_3}\)
\(=2\left(\frac{1}{1-x_1}+\frac{1}{1-x_2}+\frac{1}{1-x_3}\right)-3\)
\(=2.\frac{\left(1-x_2\right)\left(1-x_3\right)+\left(1-x_1\right)\left(1-x_3\right)+\left(1-x_1\right)\left(1-x_2\right)}{\left(1-x_1\right)\left(1-x_2\right)\left(1-x_3\right)}-3\)
\(=2.\frac{1-x_2-x_3+x_2x_3+1-x_1-x_3+x_1x_3+1-x_1-x_2+x_1x_2}{\left(1-x_1-x_2+x_1x_2\right)\left(1-x_3\right)}-3\)
\(=2.\frac{3-2\left(x_1+x_2+x_3\right)+\left(x_1x_2+x_2x_3+x_3x_1\right)}{1-x_1-x_2+x_1x_2-x_3+x_1x_3+x_2x_3-x_1x_2x_3}-3\)
\(=2.\frac{3-2.0-1}{1-\left(x_1+x_2+x_3\right)+\left(x_1x_2+x_2x_3+x_3x_1\right)-x_1x_2x_3}-3\)
\(=2.\frac{2}{1-0-1-1}-3\)
\(=-7\)
Bài này lớp 7 mik đánh lộn vào lớp 9 ạ.mọi người thông cảm.
a Dw ơi,e thử làm cách khác:3
Vì \(x_1;x_2;x_3\) là 3 nghiệm của phương trình \(x^3-x-1\) nên:
\(x^3-x-1=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\)
\(=x^3-\left(x_1+x_2+x_3\right)x^2+\left(x_1x_2+x_2x_3+x_1x_3\right)x-x_1x_2x_3\)
Do đó \(x_1+x_2+x_3=0;x_1x_2+x_2x_3+x_1x_3=-1;x_1x_2x_3=1\)
Lại có:\(x_1^3-x_1-1=0\)
\(\Leftrightarrow-x_1=1-x_1^3=\left(1-x_1\right)\left(1+x_1+x_1^2\right)\)
\(\Rightarrow\frac{1+x_1}{1-x_1}=\frac{\left(1+x_1\right)\left(1+x_1+x_1^2\right)}{-x_1}=\frac{x_1^3+3x_1^2+2x_1+1}{-x_1}=\frac{3x_1^2+3x_1-2}{-x_1}=-\left(3+2x_1+\frac{2}{x_1}\right)\)
Chứng minh tương tự,ta có:
\(\frac{1+x_2}{1-x_2}=-\left(3+2x_2+\frac{2}{x_2}\right)\)
\(\frac{1+x_3}{1-x_3}=-\left(3-2x_3+\frac{2}{x_3}\right)\)
Khi đó:\(T=\frac{1+x_1}{1-x_1}+\frac{1+x_2}{1-x_2}+\frac{1+x_3}{1-x_3}\)
\(=-\left(9+2\left(x_1+x_2+x_3\right)+2\cdot\frac{x_1x_2+x_2x_3+x_1x_3}{x_1x_2x_3}\right)\)
\(=-\left(9+2\cdot0+2\cdot\frac{-1}{1}\right)\)
\(=-7\)
Vậy T=-7
a.
Ta co:
\(\orbr{\begin{cases}x^2-2x-3=0\left(1\right)\left(x\ge0\right)\\x^2+2x-3=0\left(2\right)\left(x< 0\right)\end{cases}}\)
(1)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\x=3\left(n\right)\end{cases}}\)
(2)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-3\left(n\right)\end{cases}}\)
b.
Ta lai co:
\(\orbr{\begin{cases}x^2-2x+1-4a^2=0\left(3\right)\left(x\ge0\right)\\x^2+2x+1-4a^2=0\left(4\right)\left(x< 0\right)\end{cases}}\)
Xet (3)
De phuong trinh dau co 4 nghiem thi PT(3) co nghiem
\(\Rightarrow\Delta^`>0\)
\(\Leftrightarrow4a^2>0\)
\(\Leftrightarrow a>0\)
\(\Rightarrow x_1=1+2a;x_2=1-2a\)
Tuong tu
(4)
\(a>0\)
\(\Rightarrow x_3=-1+2a;x_4=-1-2a\)
\(\Rightarrow S=\left(1+2a\right)^2+\left(1-2a\right)^2+\left(-1+2a\right)^2+\left(-1-2a\right)^2\)
\(=2\left(1+2a\right)^2+2\left(1-2a\right)^2\)
\(\Rightarrow S< +\infty\)
a) Phương trình có nghiệm \(x=2-\sqrt{3}\) nên :
\(\left(2-\sqrt{3}\right)^3+a.\left(2-\sqrt{3}\right)^2+\left(2-\sqrt{3}\right)b-1=0\)
\(\Leftrightarrow20-11\sqrt{3}+a.\left(7-4\sqrt{3}\right)+2b-b\sqrt{3}-1=0\)
\(\Leftrightarrow7a+2b+19=\sqrt{3}.\left(11+4a+b\right)\) (*)
Với a,b là các số hữu tỉ thì từ (*) suy ra :
\(\hept{\begin{cases}7a+2b+19=0\\11+4a+b=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\end{cases}}\) ( Thỏa mãn )
b) Hóng cách làm vì mình không biết làm :((