Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x/a+2b+c = y/2a+b-c = z/4a-4b+c = k
=> x = k(a+2b+c) ; y = k(2a+b-c) ; z = (4a-4b+c)k
Sau đấy thay lần lượt vào a/x+2y+z ; b/2x+y-z ; c/4x-4y+z
Ta có \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\). Áp dụng tính chất dãy tỉ số bằng nhau
=>\(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{y+x+y+x}{x-z+z+y}=\frac{2\left(x+y\right)}{x+y}=2\)
=>\(\frac{x}{y}=2=>x=2y\)
Có \(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}\left(x\ne y\ne z;x,y,z>0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{y+x+y+x}{x-z+z+y}=\frac{2\left(x+y\right)}{x+y}=2\)
\(\Rightarrow\frac{x}{y}=2\Rightarrow x=2y\left(đpcm\right)\)
P(x) = ax+ b = 0 =
=> ãx = -b => x = -b / a = x0
1/ x0 = 1/-b/a = a/-b thay vao Q(x) ta co
Q(x) = b. -a /b + a = -a + a = 0
Vậy x0 là nghiệm của P(x)=ax+b (a khác 0, b khác 0) thì 1/x0 là nghiệm của đa thức Q(x)=bx+a
\(x+2x\ne0\)
\(\Rightarrow3x\ne0\)
\(\Rightarrow x\ne0\)
x\(\ne\)0