Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(X+y)2=x2+y2+2xy
Lại có: 2xy <= x2+y2
=> (x+y)2 <= x2+y2+x2+y2=2.(x2+y2)=2.1=2
=> Giá trị lớn nhất của (x+y)2 là 2
Tìm GTLN:
Xét hiệu $2.(x^2+y^2)-(x+y)^2=2.(x^2+y^2)-x^2-y^2-2xy=x^2-2xy+y^2=(x-y)^2 \geq 0$
Nên $(x+y)^2 \leq 2.(x^2+y^2)=2$ (do $x^2+y^2=1$)
Dấu $=$ xảy ra $⇔(x-y)^2=0;x^2+y^2=1⇔x=y;x^2+y^2=1⇔x=y=\dfrac{1}{\sqrt[]2}$
Tìm Min:
Có $(x+y)^2 \geq 0$ với mọi $x;y$
Dấu $=$ xảy ra $⇔(x+y)^2=0;x^2+y^2=0⇔x=-y;x^2+y^2=1⇔x=\dfrac{1}{\sqrt[]2};y=-\dfrac{1}{\sqrt[]2}$ và hoán vị
x, y là 2 STN liên tiếp \(\Rightarrow y=x+1\)
\(\Rightarrow\left(x+1\right)^2-x^2>20\Rightarrow2x>19\Rightarrow x>\dfrac{19}{2}\)
\(\Rightarrow x_{min}=10\Rightarrow y_{min}=11\)
\(\Rightarrow\) GTNN của \(x^2+y^2\) là \(10^2+11^2=221\)