\(^{x^3+5x^2+ax+b}\)thì giá trị của a là

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

a) \(x^2-4=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

\(A=x^3-3x^2+3x-1=\left(x-1\right)^3\)

Với x=2 thì: \(A=\left(2-1\right)^3=1\)

Với x=-2 thì \(A=\left(-2-1\right)^3=-3^3=-27\)

b) \(x^2+5x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-6\end{cases}}\)

\(B=x^3-3x^2+3x-1=\left(x-1\right)^3\)

Với x=1 thì \(A=\left(1-1\right)^3=0\)

Với x=-6 thì \(A=\left(-6-1\right)^3=-7^3=-343\)

5 tháng 10 2016

\(\text{⇔(x−1)(x+6)=0}\)chỗ đó s ra thế bn ?? mìh chưa hiểu

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

8 tháng 7 2021

Tham khảo ạ !

Sợ cj ko nhìn đc ảnh 

Nguồn : ảnh vietjack 

8 tháng 7 2021

Ta có (x3 + ax2 + 2x + b) : (x2 + x + 1) = x + a - 1 dư x + b - (a - 1)x - a + 1 

Kết hợp giả thiết 

=> x + b - (a - 1)x - a + 1 = x + 1

<=>  -(a - 1)x - (a - b) = 0 

=> \(\hept{\begin{cases}a-1=0\\a-b=0\end{cases}}\Leftrightarrow a=b=1\)

Vậy a = b = 1