Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Chỉ được 1/3 bể
Gọi thời gian chảy một mình đầy bể của vòi 1 là x(giờ), thời gian chảy một mình đầy bể của vòi 2 là y(giờ)
(Điều kiện: x>0 và y>0)
Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\left(bể\right)\)
Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)
Trong 1 giờ, hai vòi chảy được 1/18(bể)
=>\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\left(1\right)\)
Trong 4 giờ, vòi 1 chảy được \(4\cdot\dfrac{1}{x}=\dfrac{4}{x}\left(bể\right)\)
Trong 7 giờ, vòi 2 chảy được \(7\cdot\dfrac{1}{y}=\dfrac{7}{y}\left(bể\right)\)
Theo đề, ta có: \(\dfrac{4}{x}+\dfrac{7}{y}=\dfrac{1}{3}\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{4}{x}+\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{2}{9}\\\dfrac{4}{x}+\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{3}{y}=\dfrac{2}{9}-\dfrac{1}{3}=\dfrac{-1}{9}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=27\\\dfrac{1}{x}=\dfrac{1}{18}-\dfrac{1}{27}=\dfrac{1}{54}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=54\\y=27\end{matrix}\right.\left(nhận\right)\)
Vậy: Thời gian chảy một mình đầy bể của vòi 1 và vòi 2 lần lượt là 54 giờ và 27 giờ
Gọi thời gian 2 vòi chảy đầy bể là x(h); y(h)
Sau 1 giờ cả 2 vòi chảy được \(\frac{1}{x}\)+\(\frac{1}{y}\)bể
Sau 45 phút = 3/4 giờ cả 2 vòi chảy được 2/5 bể nên trong 1 giờ cả 2 vòi chảy được 1. 2/5 / 3/4 = 2/5 . 4/3= 8/15 bể
=> 1/x + 1/y = 8/15 ( 1)
Nếu chảy riêng thì vòi 2 chảy chậm hơn 2 giờ => y = x+2 (2)
Từ 1 và 2 ta có: \(\frac{1}{x}\)+\(\frac{1}{x+2}\)=\(\frac{8}{15}\)
Sau bn tự làm nha
Nguồn: gg
Gọi x(h) là thời gian vòi 1 chảy một mình đầy bể
Gọi y(h) là thời gian vòi 2 chảy một mình đầy bể
(Điều kiện: x>12; y>12)
Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)
Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)
Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{12}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)
Vì khi vòi 1 chảy trong 3 giờ và vòi 2 chảy thêm 18 giờ mới đầy bể nên ta có phương trình:
\(\dfrac{3}{x}+\dfrac{18}{y}=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{3}{x}+\dfrac{18}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{4}\\\dfrac{3}{x}+\dfrac{18}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-15}{y}=\dfrac{-3}{4}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=20\\\dfrac{1}{x}=\dfrac{1}{12}-\dfrac{1}{20}=\dfrac{1}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=30\\y=20\end{matrix}\right.\)(thỏa ĐK)
Vậy: Vòi 1 cần 30 giờ để chảy đầy bể khi chảy một mình
Vòi 2 cần 20 giờ để chảy đầy bể khi chảy một mình
bổ sung là vòi 1 chảy 3h xong khóa lại rồi mới chỉ mở vòi 2 trong 18h ạ
Gọi x(h) là thời gian vòi 1 chảy một mình đầy bể
Gọi y(h) là thời gian vòi 2 chảy một mình đầy bể
(Điều kiện: \(x>\dfrac{6}{5};y>\dfrac{6}{5}\))
Trong 1h, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)
Trong 1h, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)
Trong 1h, 2 vòi chảy được: \(1:\dfrac{6}{5}=\dfrac{5}{6}\)(bể)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\)(1)
Vì vòi 1 chảy 30' và vòi 2 chảy 45' thì 2 vòi chảy được 17/36 bể nên ta có phương trình: \(\dfrac{1}{2x}+\dfrac{3}{4y}=\dfrac{17}{36}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{6}\\\dfrac{1}{2x}+\dfrac{3}{4y}=\dfrac{17}{36}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}\cdot\dfrac{1}{x}+\dfrac{3}{2}\cdot\dfrac{1}{y}=\dfrac{5}{4}\\\dfrac{1}{2}\cdot\dfrac{1}{x}+\dfrac{3}{4}\cdot\dfrac{1}{y}=\dfrac{17}{36}\end{matrix}\right.\)
Tới đây thì dễ rồi, bạn tự giải nhé
Lời giải:Giả sử vòi 1 và vòi 2 chảy riêng trong lần lượt $a$ và $b$ giờ thì sẽ đầy bể.
Khi đó, trong 1 giờ thì:
Vòi 1 chảy được $\frac{1}{a}$ bể, vòi 2 chảy được $\frac{1}{b}$ bể.
Theo bài ra ta có:
\(\left\{\begin{matrix} \frac{2}{a}+\frac{3}{b}=\frac{4}{5}\\ \frac{3}{a}+\frac{1,5}{b}=\frac{1}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{1}{a}=\frac{1}{20}\\ \frac{1}{b}=\frac{7}{30}\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=20\\ b=\frac{30}{7}\end{matrix}\right.\) (h)
Vậy...........
Gọi x(giờ) là thời gian vòi 1 chảy đầy bể y(giờ) là thời gian vòi 2 chảy đầy bểTrong 1 giờ thì vòi 1 chảy được \(\dfrac{1}{x}\) bể, còn vòi 2 chảy được \(\dfrac{1}{y}\) bể.(1) Nếu vòi 1 chảy trong 2h, vòi 2 chảy trong 3h thì được\(\dfrac{4}{5}\) bể nên ta có phương trình:
2 \(\dfrac{1}{x}\) +3 \(\dfrac{1}{y}\) = \(\dfrac{4}{5}\) <=> 2/x + 3/y = 4/5 (bể)
(2) Nếu vòi 1 chảy trong 3h, vòi 2 chảy trong 1h30ph (hay 1,5h) thì được \(\dfrac{1}{2}\)bể nên ta có phương trình:
3\(\dfrac{1}{x}\)+1,5\(\dfrac{1}{y}\)=\(\dfrac{1}{2}\) <=> 3/x + 1,5/y=1/2 (bể)
Từ (1),(2) ta có hệ PT:(3) \(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{4}{5}\\\dfrac{3}{x}+\dfrac{1,5}{y}=\dfrac{1}{2}\end{matrix}\right.\)
đặt a=\(\dfrac{1}{x}\) ; b= \(\dfrac{1}{y}\) ta có:(3) <=> \(\left\{{}\begin{matrix}2a+3b=\dfrac{4}{5}\\3a+1,5b=\dfrac{1}{2}\end{matrix}\right.\) *đoạn này tui bấm máy tính* <=> \(\left\{{}\begin{matrix}a=\dfrac{1}{20}\\b=\dfrac{7}{30}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{20}\\\dfrac{1}{y}=\dfrac{7}{30}\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=20\\y=\dfrac{30}{7}\end{matrix}\right.\)(nhận)Vậy vòi 1 chảy riêng thì sau 20h thì đầy bể, vòi 2 là 30/7h
Gọi x là lượng nước vòi A chảy trong 1 giờ
Gọi y là lượng nước vòi B chảy trong 1 giờ
Ta có Hệ PT
2x+3y=4/5 (1)
3x+1,5y=1/2 (2)
Giải hệ
x=1/20 bể
y=7/30 bể
Nếu chảy 1 mình vòi A chảy trong 1:1/20=20 giờ
Nếu chảy 1 mình vòi B chảy trong 1:7/30=30/7 giờ