K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2019

Ta có:

\(a^{2006}+a^{2008}+b^{2006}+b^{2008}\ge2\left(a^{2007}+b^{2007}\right)\)

Dấu = xảy ra khi \(a=b=1\)

\(\Rightarrow S=a^{2009}+b^{2009}=2\)

AH
Akai Haruma
Giáo viên
7 tháng 10 2019

Bài 2:

\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Rightarrow \left\{\begin{matrix} a^{100}(a-1)+b^{100}(b-1)=0(1)\\ a^{101}(a-1)+b^{101}(b-1)=0(2)\end{matrix}\right.\)

\(\Rightarrow a^{101}(a-1)-a^{100}(a-1)+b^{101}(b-1)-b^{100}(b-1)=0\) (lấy $(2)-(1)$)

\(\Leftrightarrow a^{100}(a-1)^2+b^{100}(b-1)^2=0\)

Dễ thấy \(a^{100}(a-1)^2\geq 0; b^{100}(b-1)^2\geq 0, \forall a,b\)

Do đó để tổng của chúng là $0$ thì \(a^{100}(a-1)^2=b^{100}(b-1)^2=0\)

Kết hợp với $a,b$ dương nên $a=b=1$

$\Rightarrow P=a^{2007}+b^{2007}=2$

AH
Akai Haruma
Giáo viên
7 tháng 10 2019

Bài 1:

Vì $a_i\in \left\{\pm 1\right\}$ nên $a_ia_j\in \left\{\pm 1\right\}$ với mọi $i,j=\overline{1,n}$. Khi đó:

Để tổng gồm $n$ số hạng $a_1a_2+a_2a_3+...+a_na_1=0$ thì $n$ phải chẵn và trong tổng trên có $\frac{n}{2}$ số hạng có giá trị $1$ và $\frac{n}{2}$ số hạng có giá trị $-1$

\(\Rightarrow a_1a_2.a_2a_3....a_na_1=(1)^{\frac{n}{2}}.(-1)^{\frac{n}{2}}=(-1)^{\frac{n}{2}}\)

\(\Leftrightarrow (a_1a_2...a_n)^2=(-1)^{\frac{n}{2}}\)

Vì $(a_1a_2...a_n)^2$ luôn không âm nên $(-1)^{\frac{n}{2}}$ không âm.

$\Rightarrow \forall n\in\mathbb{N}^*$ thì $\frac{n}{2}$ chẵn

$\Rightarrow n\vdots 4$

Mà $2006\not\vdots 4$ nên $n$ không thể là $2006$

28 tháng 7 2015

+> Lấy (x + y + z)^2 = x^2+y^2+z^2+2xy+2yz+2xz = 1+2xy+2yz+2xz

Mà (x + y + z)^2 = 1

=> 2xy+2yz+2xz = 0

=> xy+yz+xz = 0

=> (xy+yz+xz)(x + y + z) = 0

+> Lấy (x + y + z)^3 = x^3 + y^3 + z^3 + 6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z = 1 +  6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z 

Mà (x + y + z)^3 = 1

=>  6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z = 0

=> 6xyz + 3(xy^2 + x^2y + x^2z + xz^2 + yz^2 + y^2z) = 0

=> 6xyz + 3[xy(x+y) + xz(x+z) + yz(y+z)] = 0

=> 6xyz + 3[xy(1-z) + xz(1-y) + yz(1-x)] = 0

=> 6xyz + 3(xy - xyz + xz - xyz + yz - xyz) = 0

Mà xy+yz+xz = 0

=> 6xyz - 9xyz = 0

=> xyz = 0

Mà (xy+yz+xz)(x + y + z) = 0

=> (xy+yz+xz)(x + y + z) = xyz

=> (xy+yz+xz)(x+y+z) - xyz = 0

Phân tích đa thức trên thành nhân tử, ta có (x+y)(y+z)(x+z) = 0

=> x+y = 0 ; y+z = 0 ; x+z = 0

Có x^2017 + y^2017 + z^2017

= (x+y)(x^2017 -x^2016y+...+y^2017) + z^2017         (1)

= z^ 2017
Có x+y = 0 => x = -y

=> (x + y + z )^2017 = z^2017                                  (2)

Từ (1) và (2) = > x^2017 + y^2017 + z^2017 = (x + y + z )^2017 = 1

 

kim chiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

23 tháng 5 2016

Do tổng 3 số là một số lẻ nên 3 số gồm: 2 chẵn + 1 lẻ hoặc 3 lẻ

+TH1: 2 số chẵn và 1 số lẻ. Do vai trò của a, b, c là như nhau nên ta giả sử \(a=2x;\text{ }b=2y;\text{ }c=2z+1\) (a và b chẵn; c lẻ).

\(2007=\left(2x\right)^2+\left(2y\right)^2+\left(2z+1\right)^2=4x^2+4y^2+4z^2+4z+1\)

\(\Rightarrow4\left(x^2+y^2+z^2+z\right)=2006\)

Vế trái chia hết cho 6 mà vế phải không chia hết cho 6 => không tồn tại các số nguyên x, y, z => không tồn tại các số nguyên a, b, c.

+TH2: 3 số đều lẻ.

Giả sử \(a=2x+1;b=2y+1;c=2z+1\)

\(2007=\left(2x+1\right)^2+\left(2y+1\right)^2+\left(2z+1\right)^2=4x^2+4x+1+4y^2+4y+1+4z^2+4z+1\)

\(\Rightarrow4\left(x^2+x+y^2+y+z^2+z\right)=2004\)

\(\Rightarrow x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)=501\)

+Do x và x+1 là 2 số nguyên liên tiếp nên 1 trong 2 số là số chẵn => tích của chúng là số chẵn hay x(x+1) chẵn.

Tương tự y(y+1) và z(z+1) đều chẵn

=> Vế trái chẵn và vế phải = 501 là một số lẻ

=> không tồn tại x, y, z nguyên.

=> không tồn tại các số nguyên a, b, c thỏa mãn.

Vậy: không tồn tại các số nguyên a, b, c thỏa \(a^2+b^2+c^2=2007\)

23 tháng 5 2016

Giải 2x2 2, 2007 2 nên y2 lẻ y = 2k + 1. Ta có 2x2 + 4k2 + 4k = 2006. Vì 2006 chia 4 dư 2 nên 2x2 4 tức x lẻ, x = 2h + 1. Từ đó 2(2h + 1)2 + 4k2 + 4k = 2006
8h2 + 8h + 4k2 + 4k = 2004. Sốø 2004 8 mà 8h2 + 8h + 4k2 + 4k 8. Vô lí. Vậy không tồn tại các số nguyên x, y thỏa mãn 2x2 + y2 = 2007.
violet.vn/toanlyttdd/present/showprint/entry_id/4317509

25 tháng 7 2015

Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)

Ta có;

\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)

=> \(\frac{ad+bc}{bd}=m\)

=> ad + bc = mbd (10

Từ (1) => ad + bc chia hết cho b 

Mà bc chia hết cho b 

=> ad chia hết cho b

Mà (a,b) = 1

=> d chia hết cho b (2)

Từ (1) => ad + bc chia hết cho d 

Mà ad chia hết cho d 

=> bc chia hết cho d

Mà (c,d) = 1

=> b chia hết cho d (3)

Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)

22 tháng 6 2018

Tổng các hệ số của 1 đa thức f( x) bất kì bằng giá tị cuủa đa thức đó tại x = 1. Vậy , tổng các hệ số của đa thức :

f( x) = ( 3 - 4 + 1)2006 .(3 + 4 + 1)2007 = 0.0 = 0