Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= kết quả là số thập phân
mình chỉ biết như vậy thôi
bạn cho mình tk nha
#)Giải :
Đặt \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{3^n}\left(n\in N\right)\)
\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^n}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^n}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^n}}{2}\)
Giả sử ABCD là một hình vuông có cạnh là 1 đơn vị. Diện tích hình đó là 1.
Diện tích hình chữ nhật S1 bằng \(\frac{1}{3}\) hình vuông nên có diện tích là:
S1 = \(\frac{1}{3}\)
Chia ba phần còn lại của hình vuông ABCD, ta được hình vuông S2. Diện tích hình S2 bằng\(\frac{1}{9}\)hình vuông ABCD nên:
S2 = \(\frac{1}{9}\)
Tiếp tục chia ba phần con lại của của hình vuông ABCD, ta được hình chữ nhật S3 có diện tích:
S3 = \(\frac{1}{27}\)
Tiếp tục làm như thế và cộng lại, ta có:
S1 + S2 + S3 + S4 + S5 + S6 + ... = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)
Như vậy càng kéo dài tổng diện tích của các hình đó thì tổng ấy sẽ tiến dần đến diện tích hinh vuông ABCD, hay nói cách khác:
S1 + S2 + S3 + S4 + S5 + S6 + ... = SABCD
hoặc \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+...\)= 1
b) 1 +1 +.....+1 = 1 +1 +.....+1 = 2n-1+2n-2+2n-3+.........+2+1
2 4 2n 2 22 2n 2n
Đặt A=2n-1+2n-2+2n-3+.........+2+1
=>2A=2n+2n-1+.......+2
=>2A-A=2n-1
=> A =2n-1
2n 2n
Xin lỗi nha mình ko làm được bài a)
a) a = 1
b = 2
c = 8
Thành phân số 18/27 = 2/3
a = 3
b = 5
c = 8
Thành phân số 38/57 = 2/3 .........
Mình ko làm đc bài b
Đặt \(S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...=2\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...\right)=2+2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...\right)\)(đó cũng là S)
\(\Rightarrow S=2+2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...\right)\Leftrightarrow S=2+2S\Rightarrow S=2\)
Vậy khi tổng S kéo dài mãi mãi thì kết quả của chúng là 2
Nếu kéo dài mãi mãi thì lm sao tìm đc đáp số chứ.
Để giải đc thì tổng chỉ cs thể là 1/2+1/4+1/8+1/16+1/32+...+1/(n:2) + 1/n
Gọi giá trị biểu thức trên là A=1/2+1/4+1/8+1/16+1/32+...+1/(n:2) + 1/n
A x 2 = 1 + 1/2+1/4+1/8+1/16+1/32+...+1/(n:4) + 1/(n:2)
A = A x 2 - A = 1 + 1/2 - 1/2 + 1/4 - 1/4 + 1/8 - 1/8 + 1/16 - 1/16 + 1/32 - 1/32 + ...+1/(n:2) - 1/(n:2) - 1/n
A = 1 - 1/n
Kéo dài mãi mãi nghĩa là không có điểm dừng,nghĩa là:
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+.....\)\(=\)\(\frac{1+2+4+8+16+........}{\infty}\)\(=\)\(\frac{\infty}{\infty}\)
Không có điểm dừng chẳng khác gì dãy số tự nhiên và bằng N hoặc \(\infty\)cả.
Chúng ta có thể đặt biểu thức trên bằng S, lấy số cuối là 1/infinity và tính giá trị của nó bằng 2S-S=1-1/infinity.
Cách 1:
Đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
2A = \(1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{64}\)
A = 2A - A = \(1-\frac{1}{128}\)
=> A = \(\frac{127}{128}\)
Cách 2:
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\)
= \(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{64}-\frac{1}{128}\right)\)
= \(1-\frac{1}{128}\)
= \(\frac{127}{128}\)
1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128
Gạch 1/4 với 1/4 , 1/8 với 1/8 , 1/16 với 1/16 , 1/32 với 1/32 , 1/64 với 1/64
Còn 1/2 - 1/128 = 63/128
Đúng thì k cho mình
tổng sẽ bằng 1
Kết quả bằng một PS nhỏ hơn 1 và lớn hơn 0,5