K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2017

Ko thì ko lời giải

\(------------\)

Sai đề hử?

2 tháng 4 2017

Giải:

Chia phương trình cho \(x^2\) ta có:

\(x^2+\frac{1}{x^2}+ax+\frac{b}{x}+2=0\left(1\right)\)

\(\left(1\right)-\left(ax+\frac{b}{x}\right)=x^2+\frac{1}{x^2}+2\Leftrightarrow\left(ax+\frac{b}{x}\right)^2=\left(x^2+\frac{1}{x^2}+2\right)^2\)

Áp dụng BĐT Bunhiacopski ta có:

\(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

Dấu "=" xảy ra khi \(\frac{a}{x}=\frac{b}{y}\)

Vậy \(\left(ax+\frac{b}{x}\right)^2\le\left(x^2+\frac{1}{x^2}\right)\left(a^2+b^2\right)\) nên \(\left(x^2+\frac{1}{x^2}\right)\left(a^2+b^2\right)\ge\left(x^2+\frac{1}{x^2}+2\right)^2\)

Đặt \(x^2+\frac{1}{x^2}=t\left(t\ge2\right)\) nên \(a^2+b^2\ge\frac{\left(t+2\right)^2}{t}=t+\frac{4}{t}+4\ge2\sqrt{t.\frac{4}{t}}+4=8\)

Dấu "=" xảy ra khi \(x^2+\frac{1}{x^2}=2\Leftrightarrow x=1\) và \(a=b\) sẽ tìm ra a

2 tháng 4 2017

Nhưng thay vào không tìm ra a

24 tháng 7 2017

Câu hỏi của Nguyễn Như Ý - Toán lớp 10 | Học trực tuyến

3 tháng 7 2017

mk gửi nhầm :v here https://olm.vn/hoi-dap/question/983511.html

3 tháng 7 2017

Câu hỏi Vio lớp 9 vòng nào đây mà :)

Có lẽ gần giống với: $ x^{4}+ax^{3}+2x^{2}+bx+1=0$ - Đại số - Diễn đàn Toán học

16 tháng 3 2016

bạn ơi mk chẳng thấy b ở đâu cả