\(⋮24\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

Vì p và q là 2 số nguyên tố lớn hơn 3

\(\Rightarrow\) p2 và q2 chia cho 3 đều dư 1

\(\Rightarrow p^2-q^2⋮3\)

Vì p là số nguyên tố lớn hơn 3 \(\Rightarrow\) p không chia hết cho 2

                                                 \(\Rightarrow\) p có dạng 2m+1

Ta có: 

\(p^2=\left(2m+1\right)^2\)

\(p^2=\left(2m\right)^2+2.2m.1+1\)

\(p^2=4m^2+4m+1\)

\(p^2=4m\left(m+1\right)+1\)

Vì m(m+1) là tích của 2 số tự nhiên liên tiếp

\(\Rightarrow m\left(m+1\right)⋮2\)

\(\Rightarrow4m\left(m+1\right)⋮8\)

\(\Rightarrow\) 4m(m+1) + 1 chia cho 8 dư 1

\(\Rightarrow\) p2 chia cho 8 dư 1

Tương tự ta có qchia cho 8 dư 1

\(\Rightarrow p^2-q^2⋮8\)

Mà \(\left(8,3\right)=1;8.3=24\)

\(\Rightarrow p^2-q^2⋮24\)

12 tháng 12 2017

Vì p,q là 2 số nguyên tố > 3 nên p,q đều lẻ => p^2,q^2 đều là 2 số chính phương lẻ

=> p^2,q^2 đều chia 8 dư 1

=> p^2-q^2 chia hết cho 8 (1)

Lại có : p,q là số nguyên tố > 3 nên p,q đều ko chia hết cho 3 => p^2,q^2 đều chia 3 dư 1

=> p^2-q^2 chia hết cho 3 (2)

Từ (1) và (2) => p^2-q^2 chia hết cho 24 ( vì 3 và 8 là 2 số nguyên tố cùng nhau )

k mk nha

3 tháng 3 2020

Câu này đã có trong câu hỏi tương tự hoặc banjc so thể vào Toán vui hằng tuần, đã có bài toán này rồi nhé !

3 tháng 3 2020

https://olm.vn/hoi-dap/detail/7521148738.html bạn tham khảo nha

12 tháng 3 2018

Bạn xem lời giải chi tiết ở đường link dưới nhé:

Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath

15 tháng 2 2021

cách ra là chia hết nhé

Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5

Chứng minh p4 – 1   240

- Do p >5 nên p là số lẻ                                                                              

+ Mặt khác: p4 –1  = (p –1) (p + 1) (p2 +1)                                                 

--> (p-1 và (p+1) là hai số chẵn liên tiếp  => (p – 1) (p+1)  8                   

+ Do p là số lẻ nên p2  là số lẻ ->  p2 +1  2                                                 

- p > 5 nên p có dạng:

   + p = 3k +1 --> p – 1 = 3k + 1 – 1  = 3k   3  --> p4 – 1  3 

   + p = 3k + 2 -->  p + 1  = 3k + 2 + 1  = 3k +3  3  -->  p4 – 1  3             

- Mặt khác, p có thể là dạng:

+ P =  5k +1 --> p – 1  = 5k + 1 – 1  = 5k    5   --> p4 – 1    5

+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2  +1  = 25k2  + 20k +5  5 --> p4 – 1  5  

+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1  5

+ p = 5k +4 --> p + 1 = 5k +5  5 --> p4 – 1  5                                            

Vậy p4 – 1  8 . 2. 3 . 5 hay p4 – 1  240

Tương tự ta cũng có q4 – 1  240                                                                   

Vậy: (p4 – 1) – (q4 –1)  = p4 – q4    240

15 tháng 2 2021

Link : Câu hỏi của Sáng Đường - Toán lớp 6 - Học trực tuyến OLM

Chúc hok tốt !!!

6 tháng 4 2018

 Do A = x183y   chia cho 2 và 5 đều dư 1 nên y = 1. Ta có A = x183y 

Vì A = x183y  chia cho 9 dư 1

→ x183y  - 1 chia hết cho 9

→ x183y chia hết cho 9

↔ x + 1 + 8 + 3 + 0 chia hết cho 9 ↔ x + 3 chia hết cho 9, mà x là chữ số nên x = 6

Vậy x = 6; y = 1

6 tháng 4 2018

a)

= 48 + 288 : ( x - 3 )2 = 50 

288 : ( x - 3 )= 50 - 48

288: ( x - 3 )2= 2

(x - 3 )2= 288 : 2

(x - 3)2= 144

(x - 3)= 122

x - 3 = 12 

x = 12 + 3 = 15


 

30 tháng 1 2020

a, Số dư luôn <3