Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\frac{a-2ab-b}{2a+3ab-2b}=\frac{\frac{1}{b}-2-\frac{1}{a}}{\frac{2}{b}+3-\frac{2}{a}}=\frac{-1-2}{3-2}=-3\)
\(\frac{1}{a}-\frac{1}{b}=1\Rightarrow b-a=ab\)
\(P=\frac{-\left(b-a\right)-2ab}{-2\left(b-a\right)+3ab}=\frac{-3ab}{ab}=-3\)
sai đề nha phải là\(\dfrac{a-2ab-b}{2a+3ab-2b}\) nha
ta có \(\dfrac{1}{a}-\dfrac{1}{b}=1\Leftrightarrow\dfrac{b-a}{ab}=1\Leftrightarrow b-a=ab\)
Đặt A=\(\dfrac{a-2ab-b}{2a+3ab-2b}\)
A=\(\dfrac{a-2\left(b-a\right)-b}{2a+3\left(b-a\right)-2b}\) (vì b-a=ab)
A=\(\dfrac{a-2b+2a-b}{2a+3b-3a-2b}\)
A=\(\dfrac{3a-3b}{b-a}=\dfrac{3\left(a-b\right)}{-\left(a-b\right)}=-3\)
a/ \(\Leftrightarrow x\left(8x^3+12x^2+6x+1\right)=0\Leftrightarrow x\left[\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1+1\right]=0\)
\(\Leftrightarrow x\left(2x+1\right)^3=0\Rightarrow\orbr{\begin{cases}x=0\\\left(2x+1\right)^3=0\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)
b/ \(\Leftrightarrow4x^2-\left(4x^2-9\right)=9x\Leftrightarrow9x=9\Leftrightarrow x=1\)
c/ Từ \(\frac{1}{a}-\frac{1}{b}=1\Rightarrow a-b=-ab\) thay vào biểu thức
\(\Rightarrow\frac{-ab-2ab}{-2ab+3ab}=\frac{-3ab}{ab}=-3\)
Biết \(\frac{1}{a}-\frac{1}{b}=1\) và \(a,b\ne0;2a+3ab-2b\ne0.\)
tính \(Q=\frac{a-2ab-b}{2a+3ab-2b}\)
Theo mình thì \(\frac{1}{a}\)- \(\frac{1}{b}\)=1 không thể xảy ra vì 1/a - 1/b =1 => (b-a)/(ab)=1
hay b-a=a.b <=> a=b=0 (trái với đề bài)
Hình như sai đề :
Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)
\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)
\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )
Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)
\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)
\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )
CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )
Thay ( * ) và ( * ') vào E , ta được :
\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)
\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)
\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)
\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)
\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)
\(=\dfrac{0}{2}=0\)
Vậy \(E=0\)
nếu \(\dfrac{1}{a}-\dfrac{1}{b}=1\Leftrightarrow a-b=-ab\)
\(P=\dfrac{a-b-2ab}{2\left(a-b\right)+3ab}=\dfrac{-3ab}{ab}=-3\)