Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có
MN//BC => BMNC là hình thang (theo định nghĩa)
Ta m giác ABC cân tại A => ^ABC = ^ACB
=> BMNC là hình thang cân
+ Xét tam giác MBI có
^MIB = ^IBC (góc so le trong) (1)
^IBC = ^IBM (BI là phân giác ^B) (2)
Từ (1) và (2) => tam giác MBI cân tại M => MI = MB (*)
+ Xét tam giác NCI chứng minh tương tự ta cũng có NI = NC (**)
Từ (*) và (**) => MI + NI = MB + NC => MN = MB + NC (dpcm)
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
Theo đề bài ta có \(\Delta ABC\) cân tại A, gọi xy là đường thẳng cắt AB, AC và song song với BC. Gọi D, E lần lượt là giao điểm của xy với AB và AC.
C1: Vì \(\Delta ABC\) cân tại A (gt)
\(\Rightarrow\widehat{B}=\widehat{C}\)
Xét tứ giác BCED có \(\widehat{B}=\widehat{C}\)
=> tứ giác BCED là hình thang cân (theo định lí)
Vậy ...
Tứ giác thu dc là hình thang cân vì tam giác cân có 2 góc kề 1 đáy bằng nhau nên dễ dàng chứng minh là hình thang cân