Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O
Theo bất đẳng thức tam giác ta có:
OA + OB > AB
OB + OC > BC
OC + OD > CD
OD + OA > DA
Cộng 4 bđt trên theo vế ta được:
2(OA + OB + OC + OD) > AB + BC + CD + DA
<=> (OA + OC) + (OB + OD) > (AB + BC + CD + DA)/2
\(\Leftrightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\)
A B C D O M K N
Tứ giác AMBK là hình bình hành => AM // BK; AK // BM hay AD // BK; AK // BC
Ta có: \(\Delta\)BAD cân tại A => ^ADB = ^ABD. Mà AD // BK => ^ADB = ^KBD
Nên ^ABD = ^KBD => BD là phân giác của ^ABK.
Chứng minh tương tự ta được: AC là phân giác của ^BAK.
Xét \(\Delta\)AKB có: BD là phân giác ^ABK; AC là phân giác ^BAK; AC giao BD ở O
=> KO là phân giác ^AKB hay KN là phân giác ^AKB => ^BKN = ^AKB/2
Mà ^AKB = 1800 - ^KBN (Do AK // BN) => ^BKN = (1800 - ^KBN) /2
=> \(\Delta\)NBK cân tại B => BN=BK. Lại có BK=AM (Do tứ giác AMBK là hbh)
=> BN=AM (đpcm).