Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một vài giới hạn đặc biệt của dãy số
Giới hạn dãy |
Giới hạn hàm |
lim1n=0lim1nk=0,K∈Z∗limqn=0,|q|<1limc=climnk=+∞,K∈Z∗limqn=+∞,q>1lim1n=0lim1nk=0,K∈Z∗limqn=0,|q|<1limc=climnk=+∞,K∈Z∗limqn=+∞,q>1
|
limx→x0x=x0limx→x0c=climx→±∞cxk=0,K∈z∗limx→x0x=x0limx→x0c=climx→±∞cxk=0,K∈z∗
limx→−∞xk=+∞limx→−∞xk=+∞(nếu k chẵn) limx→−∞xk=−∞limx→−∞xk=−∞(nếu k lẻ)
|
Dãy ( u n + v n ) không có giới hạn hữu hạn.
Thật vậy, giả sử ngược lại ( u n + v n ) có giới hạn hữu hạn.
Khi đó, các dãy số ( u n + v n ) v à ( u n ) cùng có giới hạn hữu hạn, nên hiệu của chúng cũng là một dãy có giới hạn hữu hạn, nghĩa là dãy số có số hạng tổng quát là u n + v n − u n = v n có giới hạn hữu hạn. Điều này trái với giả thiết ( v n ) không có giới hạn hữu hạn.