K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)

<=>\(\frac{ab+bc+ca}{abc}\ge a+b+c\)

Mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

Suy ra \(\frac{\left(a+b+c\right)^2}{3}.\frac{1}{abc}\ge a+b+c\)

Hay \(a+b+c\ge3abc\)(đpcm)

Dấu "=" xảy ra <=>a=b=c

25 tháng 10 2015

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\left(a+b+c\right)\left(a^2-ab+b^2-bc+c^2-ca\right)=0\)\(Màa,b,c\ne0\Rightarrow a^2-ab+b^2-bc+c^2-ca=0\Rightarrow a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)

\(a,b,c\ne0\Rightarrow a-b=0;b-c=0;c-a=0\Rightarrow a=b=c\)

6 tháng 12 2020

Bài làm

Ta có : a3 + b3 + c3 = 3abc

<=> ( a3 + b3 ) + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )[ ( a + b )2 - ( a + b )c + c2 ] - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)

Vì a, b, c dương => a + b + c > 0 => a + b + c = 0 vô lí

Xét a2 + b2 + c2 - ab - bc - ac = 0

<=> 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

VT ≥ 0 ∀ a,b,c . Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Leftrightarrow a=b=c\)

=> \(P=\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(\frac{a}{a}-1\right)+\left(\frac{b}{b}-1\right)+\left(\frac{c}{c}-1\right)\)

\(=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)\)

\(=0\)

30 tháng 7 2017

Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c

                             =(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0

Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c

Vậy a=b=c


 

1 tháng 10 2020

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\left(a+b+c>0\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow a=b=c}\)

2 tháng 11 2016

Do \(a,b,c\) là các số dương suy ra:

\(a>0;b>0;c>0\)

Suy ra: \(a+b+c>0\)

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\left(a+b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow a+b+c=0\) hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)

Do \(a+b+c>0\)

Suy ra: \(a^2+b^2+c^2-ab-bc-ca=0\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Suy ra: \(a-b=0;b-c=0\)\(c-a=0\)

Suy ra: \(a=b=c\)

Suy ra: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)

Ta có: \(\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)=0\)

Vậy ...

 

 

2 tháng 11 2016

Sau khi giải bài này xong mình cảm thấy hoa mắt và chóng mặt, mong GP sẽ gấp đôi :)

7 tháng 7 2021

Ta có a3 + b3 + c3 = 3abc

<=> (a + b)3  - 3ab(a + b) + c3 = 3abc

<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0

<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0 

<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\left(\text{tmđk}\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)

Khi a2 + b2 + c2 - ab - ac - bc = 0 

<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0 

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0 

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(\text{loại}\right)\)

Vậy a + b + c = 0

2 tháng 8 2017

A = a3 + b3 + c- 3abc

= (a+b)3 - 3ab(a+b) + c3 - 3abc

= (a+b+c)(a2 + 2ab + b2 -ac -bc + c2) - 3ab (a+b+c)

=(a+b+c)(a2 + b2 + c2 - ab - bc - ac)

a+ b + c > 0    (dựa giả thiết)

a2 + b2 + c2 - ab - bc - ac > 0    (*)

Chứng minh (*)

\(a^2+b^2+c^2-ab-bc-ac=\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\)