Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 7a + 11b chia hết 3
\(\Rightarrow\)2.(7a+11b) chia hết cho 3
\(\Rightarrow\)14a + 22b chia hết cho 3
\(\Rightarrow\)7.(2a + b) + 15b chia hết cho 3
Vì 15b chia hết cho 3 \(\Rightarrow\)7.(2a + b) chia hết cho 3
\(\Rightarrow\)2a + b chia hết cho 3(đpcm)
A=7a+11b
B= 2a+b
2A -7B =14a +22b - 14a - 7b = 15 chia hết cho 3
+ Nếu A chia hết cho 3 => 2A chia hết cho 3 =>. 7B chia hết cho 3 => B chia hết cho 3
Vậy A chia hết cho 3 thì B chia hết cho 3
4a2+3ab-11b2 chia hết cho 5 \(\left(5a^2+5ab-10b^2\right)-\left(4a^2+3ab-11b^2\right)\) chia hết cho 5
a2 + 2ab + b2 chia hết cho 5
( a + b )2 chia hết cho 5
a + b chia hết cho 5 (vì 5 là số nguyên tố)
a4 - b4 = a2 + b2 (a + b) (a - b) chia hết cho 5
4a2+3ab-11b2 chia hết cho 5
\(\left(4a^2+3ab-11b^2\right)⋮5\)
\(\Leftrightarrow5\left(a^2+ab-2b^2\right)-\left(4a^2+3ab-11b^2\right)⋮5\)
\(\Leftrightarrow\left(a^2+2ab+b^2\right)⋮5\)
\(\Leftrightarrow a+b⋮5\)
\(\Rightarrow a^4-b^4=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)⋮5\)
1)
a) 1+5+5^2+5^3+....+5^101
=(1+5)+(5^2+5^3)+....+(5^100+5^101)
=6+5^2.(1+5)+...+5^100(1+5)
=6+5^2.6+...+5^100.6 chia hết cho 6 , vì mỗi số hạng đều chia hết cho 6
b) 2+2^2+2^3+...+2^2016
=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+1^10)+....+(2^2012+2^2013+2^2014+2^2015+2^2016)
=2.31+2^6.31+...+2^2012.31 chia hết cho 31
Tương tự như câu a lên mk rút gọn
2) còn bài a kì quá abc deg là sao nhỉ
b) abc chia hết cho 8 nên a ; b hoặc c chia hết cho 8
bạn nghĩ thử đi bài 2b dễ lắm nếu ko bt thì hỏi lại
\(4a+11b=6a+9b-2a+2b=6a+9b-2\left(b-a\right)\) chia hết cho 3
Mà \(6a+11b\) chia hết cho 3 nên \(2\left(b-a\right)\) chia hết cho 3 \(\Rightarrow b-a\) chia hết cho 3 (dpcm)