K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

\(\frac{n^{2014}+n^{2013}+2}{n+1}\)=\(\frac{n\cdot n^{2013}+n^{2013}+2}{n+1}\)=\(\frac{n^{2013}\cdot\left(n+1\right)+2}{n+1}\)=\(\frac{n^{2013}\cdot\left(n+1\right)}{n+1}+\frac{2}{n+1}\)=\(n^{2013}+\frac{2}{n+1}\)

Để \(\frac{n^{2014}+n^{2013}+2}{^{n+1}}\)là số nguyên thì 2⁞n+1=>n+1 thuộc ước của 2

n+11-12-2
n0-21-3
21 tháng 1 2016

a, + Nếu n là số chẵn => n - 4 là số chẵn => (n - 4)(n - 5) là số chẵn

    + Nếu n là số lẻ => n - 5 là số chẵn => (n - 4)(n - 5) là số chẵn

Vậy (n - 4)(n - 5) là số chẵn với mọi n thuộc Z

b, B = n.n - n - 1

B = n(n - 1) - 1

Vì n và n - 1 khác tính chẵn lẻ nên n là số chẵn hoặc n - 1 là số chẵn

=> n(n - 1) là số chẵn

=> n(n - 1) là số lẻ

Vậy...

21 tháng 1 2016

Nhầm đoạn cuối là n(n - 1) - 1 là số lẻ

15 tháng 6 2018

1. A.

\(n+2⋮n+1\) 

\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\) 

Mà \(\left(n+1\right)⋮\left(n+1\right)\)

Nên \(1⋮\left(n+1\right)\)  

\(\Rightarrow\left(n+1\right)€\)Ư(1)

       (n+1) € {1;—1}

TH1: n+1=1                  TH2: n+1=—1

         n    =1–1                       n    =—1 —1

         n    =0                           n    =—2

Vậy n€{0;—2}

15 tháng 6 2018

1a) 

n+2 chia hết cho n-1

hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)

Mà (n-1) chia hết cho n-1

nên 3 chia hết cho n-1

Suy ra n-1 thược Ư(3)={1;-1;3;-3}

Suy ra n thuộc {2;0;4;-2}

b) 3n-5 chia hết cho n-2

hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)

3(n-2)+1 chia hết cho n-2

Mà 3(n-2) chia hết cho n-2

nên 1 chia hết cho n-2

Suy ra n-2 thược Ư(1)={1;-1}

Suy ra n thuộc {3;1}

7 tháng 5 2016

sorry mình 0 bít làm 

7 tháng 5 2016

a, Ta có:

T=2013^0+2013^1+2013^2+...+2013^2009+2013^2010

=> 2013T = 2013+2013^2+2013^3+....+2013^2010+2013^2011

=> 2013T-T = (2013+2013^2+2013^3+....+2013^2010+2013^2011) - (2013^0+2013^1+2013^2+...+2013^2009+2013^2010)

<=> 2012T = 2013^2011-2013^0

<=> 2012T=2013^2011-1

=> 2012T +1 = 2013^2011

21 tháng 2 2017

Đặt  A=n(n+2)(n+7) 

TH1: n=3k => A hiển nhiên chia hết cho 3

TH2: Nếu n=3k+1 => A=(3k+1)(3k+1+2)(3k+1+7)=(3k+1).3(k+1)(3k+8)  chia hết cho 3

TH3: Nếu k=3k+2 => A=(3k+2)(3k+2+2)(3k+2+7)=(3k+2)(3k+4).3(k+3) chia hết cho 3

Vậy A chia hết cho 3 với mọi n thuộc Z

a, \(A=\frac{2n+5}{n+1}=\frac{2\left(n+1\right)+3}{n+1}=\frac{3}{n+1}\)

=> n + 1 \(\in\)Ư(3) = {1;-1;3;-3}

Lập bảng 

n + 11-13-3
n0-22-4

Vì n \(\in Z\) => tm 

b, Gợi ý : A thuộc lớn nhất, tính bth ko sao e nhé !

c, \(A=\frac{n+7}{n-2}=\frac{n-2+9}{n-2}=\frac{9}{n-2}\)

Để A nguyên .... làm tiếp e nhé !