K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

n.n - 4.n - 6

= n - 4 - 6

=> 6 chia hết cho n - 4, n - 4 thuộc Ư (6) = {1; 2; 3; 6}

n - 4 = 1

=> n = 5

n - 4 = 2

=> n = 6

n - 4 = 3

=> n = 7

n - 4 = 6

=> n = 10

Vậy n thuộc {5; 6; 7; 10}

1 tháng 11 2017

1.=> n+7-(n+2) chia hết cho n+2

=>n+7-n-2 chia hết cho n+2

=>5 chia hết cho n+2

=>n+2 thuộc Ư(5)=1;5

ta có bảng:

n+215
nloại 3   

Vậy n=3

MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ

4 tháng 11 2017

3.3n+15 chia hết cho n+1

=>3n+15-n+1 chia hết cho n+1

=>3n+15-3(n+1) chia hết cho n+1 

=>3n+15-3n-3 chia hết cho n+1 

=>12 chia hết cho n+1 

=>n+1 thuộc Ư(12)=1;2;3;4;6;12

ta có bảng:

n+1123412
n0123

11

Vậy n thuộc 0;1;2;3;11

21 tháng 11 2017

a)Ta có :74n-1=...1-1=...0\(⋮\)5

Vậy 74n-1\(⋮\)5

b)Ta có 34n+1+2=34nx3+2=...1x3+2=...3+2=...5\(⋮\)5

Vậy ...

c)Ta có :24n+1+3=24nx2+3=...6x2+3=...2+3=...5\(⋮\)5

Vậy ...

d)Ta có :24n+2+1=24nx22+1=...1x4+1=...4+1=...5\(⋮\)5

Vậy ...

e)Ta có :92n+1+1=92nx9+1=...1x9+1=...9+1=...0\(⋮\)10

Vậy

f)mik ko biết làm

g)mik cũng ko biết làm

22 tháng 11 2017

bạn cố gắng làm câu f và câu g giúp mình nha

18 tháng 3 2018

Bài 1 Bài này sai đề bạn nhé!!!!

Bài 2:

a) 74n = (74)n =2401n

Mà 2401n luôn có tận cùng bằng 1

\(\Rightarrow\)2401n - 1 tận cùng là 0 nên chia hết cho 5

b)34n + 1 = (34)n . 3 = 81n . 3

Mà (......1)n luôn có tận cùng là 1

\(\Rightarrow\)(......1)n .3 tận cùng là 3

\(\Rightarrow\)34n + 1 + 2 tận cùng là 5 chia hết cho 5

c)Câu này hình như sai đề bạn nhé!!!

d)92n + 1 = (92)n . 9 = 81n .9

Mà 81n luôn có tận cùng là 1

\(\Rightarrow\) 81n . 9 có tận cùng là 9

\(\Rightarrow\)92n + 1 + 1 có tận cùng là 0 chia hết cho 10

Bạn tự trình bày lại để theo cách của bạn và tick cho mình nhé!!!

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

2 tháng 1 2022

a) 3n + 2 chia hết cho n - 1

⇒⇒ 3n - 3 + 5 chia hết cho n - 1

⇒⇒ 3(n - 1) + 5 chia hết cho n - 1

⇒⇒ 5 chia hết cho n - 1

⇒⇒ n - 1 ∈∈ Ư(5) = {-1; 1; -5; 5}

⇒⇒ n ∈∈ {0; 2; -4; 6}

b) 3n + 24 chia hết cho n - 4

⇒⇒ 3n - 12 + 36 chia hết cho n - 4

⇒⇒ 3(n - 4) + 36 chia hết cho n - 4

⇒⇒ 36 chia hết cho n - 4

⇒⇒ n - 4 ∈∈ Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}

⇒⇒ n ∈∈ {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}

c) 3n + 5 chia hết cho n + 1

⇒⇒ 3n + 3 + 2 chia hết cho n + 1

⇒⇒ 3(n + 1) + 2 chia hết cho n + 1

⇒⇒ 2 chia hết cho n + 1

⇒⇒ n + 1 ∈∈ Ư(2) = {-1; 1; -2; 2}

⇒⇒ n ∈∈ {0; 2; -1; 3}