Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
♣ Ta thấy n = 2 thì 2n + 1 = 5 không thỏa = n³
♣ Nếu n > 2 => n lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2n + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2n + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2n + 1 = 8k³ + 12k² + 6k + 1
<=> n = k(4k² + 6k + 3)
=> n chia hết cho k
=> k là ước số của số nguyên tố n.
Do n là số nguyên tố nên k = 1 hoặc k = n
♫ Khi k = 1
=> n = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = n
=> (4k² + 6k + 3) = (4n² + 6n + 3) = 1
Do n > 2 => (4n² + 6n + 3) > 2 > 1
=> không có giá trị n nào thỏa.
Đáp số : n = 13
2n+1=n3n3 (n là số tự nhiên)
<=>2n=n3−1=(n−1)(n2+n+1)n3−1=(n−1)(n2+n+1)
vì n là số nguyên tố nên ta có {n−1=2n2+n+1=n{n−1=2n2+n+1=p hoặc{n−1=nn2+n+1=2{n−1=pn2+n+1=2 hoặc {n−1=1n2+n+1=2n{n−1=1n2+n+1=2p hoặc {n−1=2pn2+n+1=1{n−1=2pn2+n+1=1
=>n=3
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)
\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)
\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)
\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)
can
\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)
n=(0,1,2)
du
n=2
ds: n=2